Background And Objective: Epilepsy surgery within the temporal lobe of the language dominant hemisphere bears the risk of postoperative verbal memory decline. As surgical procedures have become more tailored, the question has arisen, which type of resection within the temporal lobe is more favourable for memory outcome. Since the hippocampus (HC) is known to play an essential role for long-term memory, we examined whether HC sparing resections help to preserve verbal memory functions.
Methods: We retrospectively analysed neuropsychological data (prior to and 1 year after surgery) of patients undergoing either HC sparing resections (HC-S, N=65) or resections including the hippocampus (HC-R, N=62).
Results: Prior to surgery, the HC-R group showed worse memory performance as compared to HC-S patients. Both patient groups revealed further deterioration over time, but in verbal learning HC-R patients demonstrated a stronger decline. Predictors for verbal learning decline were left-sided surgery, better preoperative performance, higher age at surgery, hippocampus resection, and lower preoperative IQ. In patients with spared HC, resection of the left-sided parahippocampal gyrus was rather accompanied by a decline in verbal learning performance. For visual memory, better preoperative performance best predicted deterioration after surgery. Seizure outcome was comparable between the two groups (HC-S: 66%, HC-R: 65% Engel 1a).
Conclusions: Temporal lobe resections within the language dominant hemisphere can be accompanied by a decline in verbal memory performance, even if the HC is spared. Yet, HC sparing surgery is associated with a benefit in verbal learning performance. These results can help when counselling patients prior to epilepsy surgery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/jnnp-2012-304052 | DOI Listing |
Int J Surg Pathol
January 2025
Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
Primary intracranial sarcoma, -mutant, included as a new diagnostic entity in the 2021 WHO Classification of Central Nervous System Tumors, is a rare, but aggressive neoplasm generally identified in the supratentorial forebrain. The prognostic implications of these uncommon tumors and optimal treatment strategy remain unclear. A 19-year-old woman was found unresponsive after reporting a severe headache.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt. Electronic address:
Epilepsy is a neurological disease characterized by unprovoked recurrent epileptic seizures. Temporal lobe epilepsy (TLE) is the commonest type of focal epilepsy in adults that resist to the conventional anti-seizure medications (ASMs). Interestingly, ASMs do not affect the epileptogenesis and progression of disease.
View Article and Find Full Text PDFAging (Albany NY)
December 2024
CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution.
View Article and Find Full Text PDFiScience
January 2025
IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy.
Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
Perception and production of music and speech rely on auditory-motor coupling, a mechanism which has been linked to temporally precise oscillatory coupling between auditory and motor regions of the human brain, particularly in the beta frequency band. Recently, brain imaging studies using magnetoencephalography (MEG) have also shown that accurate auditory temporal predictions specifically depend on phase coherence between auditory and motor cortical regions. However, it is not yet clear whether this tight oscillatory phase coupling is an intrinsic feature of the auditory-motor loop, or whether it is only elicited by task demands.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!