The contributions of various physical factors to the energetics of complexation of aromatic drug molecules with C(60) fullerene are investigated in terms of the calculated magnitudes of equilibrium complexation constants and the components of the net Gibbs free energy. Models of complexation are developed taking into account the polydisperse nature of fullerene solutions in terms of the continuous or discrete (fractal) aggregation of C(60) molecules. Analysis of the energetics has shown that stabilization of the ligand-fullerene complexes in aqueous solution is mainly determined by intermolecular van der Waals interactions and, to lesser extent, by hydrophobic interactions. The results provide a physicochemical basis for a potentially new biotechnological application of fullerenes as modulators of biological activity of aromatic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201200938 | DOI Listing |
Nanotechnology
December 2024
Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str. 25, Ilmenau, 98693, GERMANY.
The powerful antioxidant properties of C60 fullerenes have been widely used in biomedical nanotechnology. Owing to the negative effects of free radicals in oxidative stress processes, antioxidants are required to protect injured muscles. Here, the effect of water-soluble C60 fullerenes (daily oral dose 1 mg/kg) on the process of restoration of contractile activity of skeletal muscle of rats (muscle gastrocnemius) 15 days after the initiation of open trauma of different severity was studied for the first time.
View Article and Find Full Text PDFFront Chem
November 2024
Department of Functional Materials and Electronics, FTMC, State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania.
Medical device-associated biofilm infections continue to pose a significant challenge for public health. These infections arise from biofilm accumulation on the device, hampering the antimicrobial treatment. In response, significant efforts have been made to design functional polymeric devices that possess antimicrobial properties, limiting or preventing biofilm formation.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany.
Traumatic skeletal muscle injury is a complex pathology caused by high-energy trauma to muscle tissue. Previously, a positive effect was established when C fullerene was administered against the background of muscle ischemia, mechanical muscle injury, and other muscle dysfunctions, which probably protected the muscle tissue from damage caused by oxidative stress. Using tensiometry and biochemical analysis, the biomechanical parameters of skeletal muscle contraction and biochemical indices of the blood of rats 15 days after traumatic injury of the soleus muscle caused by myocyte destruction by compression were studied.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
School of Science, Northeast Electric Power University, Jilin 131200, China.
Confining protons into an enclosed carbon cage is expected to give rise to unique electronic properties for both the inner proton and the outer cage. In this work, we systematically investigated the geometric and electronic structures of cationic X@C (X = H, HO, and NH), and their corresponding neutral species (X = HO, NH), by quantum chemical density functional theory calculations. We show that C can trap HO, NH, HO and NH at the cage center and only slightly influence their geometries.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
October 2024
Laboratory of molecular biology, Research Centre for Medical Genetics, 115478 Moscow, Russia.
Background: The new synthesized water-soluble derivatives of C fullerenes are of a great interest to researchers since they can potentially be promising materials for drug delivery, bioimaging, biosonding, and tissue engineering. Surface functionalization of fullerene derivatives changes their chemical and physical characteristics, increasing their solubility and suitability for different biological systems applications, however, any changes in functionalized fullerenes can modulate their cytotoxicity and antioxidant properties. The toxic or protective effect of fullerene derivatives on cells is realized through the activation or inhibition of genes and proteins of key signaling pathways in cells responsible for regulation of cellular reactive oxygen species (ROS) level, proliferation, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!