Synthesis of soluble poly-yne polymers containing zirconium and silicon and corresponding conversion to nanosized ZrC/SiC composite ceramics.

Dalton Trans

Laboratory of Advanced Polymer Materials, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China.

Published: March 2013

Soluble organometallic polymers containing zirconium and silicon were synthesized by a salt metathesis reaction. The molecular weight of the polymers was measured by GPC and the corresponding structures were identified by (13)C NMR and FT-IR. After heat treatment of the polymers under argon at 1400 °C for 2 h, ZrC/SiC composites with different molar ratios of crystalline phases were obtained and characterized by XRD, elemental analysis, SEM and Raman spectroscopy. The crystalline size of the composites was approximately 100 nm-200 nm and the elements were well distributed at the different sites in the ceramics. The Raman results indicated that the ceramic residue could be considered as ZrC/SiC/C ternary composites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt32428hDOI Listing

Publication Analysis

Top Keywords

polymers zirconium
8
zirconium silicon
8
synthesis soluble
4
soluble poly-yne
4
polymers
4
poly-yne polymers
4
silicon corresponding
4
corresponding conversion
4
conversion nanosized
4
nanosized zrc/sic
4

Similar Publications

Aim: The aim of this study was to compare the marginal accuracy of polyetheretherketone (PEEK) and zirconia copings fabricated using computer-aided design/computer-aided manufacturing (CAD/CAM) technology, and to assess the impact of their material properties on accuracy when produced with a 4-axis milling system under controlled conditions.

Settings And Design: The study employed an in vitro design with a stainless steel die model featuring a 6 mm axial wall height, a 6-degree total occlusal convergence, and a radial shoulder finish line.

Materials And Methods: Thirty stone dies were created from silicone impressions of the metal die and poured using type-IV dental stone.

View Article and Find Full Text PDF

Removal of liquid scintillator exudates by the metal organic frameworks materials: The role of functional groups.

PLoS One

December 2024

Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China.

The leakage of Liquid scintillator exudates has brought potential harm to the environment. Attributed to the large specific surface area and high modifiability, high-performance adsorbents based on metal-organic frameworks (MOFs) can effectively remove organic pollutants. In this work, we use different functional groups to prepare the material of UIO-66(Zr).

View Article and Find Full Text PDF

In this study, three different materials were investigated for their ability to degrade benzene, toluene, and xylene (BTX) using light energy. The materials studied were activated charcoal (AC), zeolitic imidazolate framework (ZIF-8), and zirconium metal-organic framework (Zr-MOF). Initially, AC, ZIF-8, and Zr-MOF were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analysis, and spectroscopic analysis techniques.

View Article and Find Full Text PDF

Background: The success of a restoration largely depends on the quality of its fit. This study aimed to investigate the fit quality of monolithic zirconia veneers (MZVs) produced through traditional and digital workflows.

Methods: A typodont maxillary right central incisor was prepared.

View Article and Find Full Text PDF

Shear bond strength and ARI scores of metal brackets to glazed glass ceramics and zirconia: an in vitro study investigating surface treatment protocols.

BMC Oral Health

December 2024

Faculty of Dentistry, Innovative Dental Materials and Interfaces Research Unit (URB2i), UR 4462, Paris Cité University, 1 rue Maurice Arnoux, Montrouge, 92120, France.

Objective: To evaluate the shear bond strength (SBS) and adhesive remnant index (ARI) scores of metal brackets to glazed lithium disilicate reinforced glass-ceramics and zirconia according to various surface treatment protocols.

Methods: A total of 240 lithium disilicate ceramic (LD) and 240 zirconia (Zr) blocks were randomly divided according to sandblasting, hydrofluoric acid (HF) etching, universal primer use, and the adhesive system applied. A maxillary canine metal bracket was bonded to each sample with resin cement (Transbond XT, TXT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!