Industrial activity over the last two centuries has increased heavy metal contamination worldwide, leading to greater human exposure. Zinc is particularly common in industrial effluents and although an essential nutrient, it is highly toxic at elevated concentrations. Photoautotrophic microbes hold promise for heavy metal bioremediation applications because of their ease of culture and their ability to produce sulfide through metabolic processes that in turn are known to complex with the metal ion, Hg(II). The green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium Synechococcus leopoliensis were all able to synthesize sulfide and form zinc sulfide when exposed to Zn(II). Supplementation of their respective media with sulfite and cysteine had deleterious effects on growth, although ZnS still formed in Cyanidioschyzon cells to the same extent as in unsupplemented cells. The simultaneous addition of sulfate and Zn(II) had similar effects to that of Zn(II) alone in all three species, whereas supplying sulfate prior to exposure to Zn(II) enhanced metal sulfide production. The coupled activities of serine acetyltransferase and O-acetylserine(thiol)lyase (SAT/OASTL) did not increase significantly in response to conditions in which enhanced ZnS formation occurred; sulfate added prior to and simultaneously with Zn(II). However, even low activity could provide sufficient sulfate assimilation over this relatively long-term study. Because the extractable activity of cysteine desulfhydrase was elevated in cells that produced higher amounts of zinc sulfide, cysteine is the probable source of the sulfide in this aerobic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-012-4636-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!