SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients.

Behav Res Methods

Human Sciences Division, Northern Ontario School of Medicine, Thunder Bay, ON, Canada, P7B 5E1.

Published: September 2013

Several procedures that use summary data to test hypotheses about Pearson correlations and ordinary least squares regression coefficients have been described in various books and articles. To our knowledge, however, no single resource describes all of the most common tests. Furthermore, many of these tests have not yet been implemented in popular statistical software packages such as SPSS and SAS. In this article, we describe all of the most common tests and provide SPSS and SAS programs to perform them. When they are applicable, our code also computes 100 × (1 - α)% confidence intervals corresponding to the tests. For testing hypotheses about independent regression coefficients, we demonstrate one method that uses summary data and another that uses raw data (i.e., Potthoff analysis). When the raw data are available, the latter method is preferred, because use of summary data entails some loss of precision due to rounding.

Download full-text PDF

Source
http://dx.doi.org/10.3758/s13428-012-0289-7DOI Listing

Publication Analysis

Top Keywords

spss sas
12
regression coefficients
12
summary data
12
sas programs
8
pearson correlations
8
common tests
8
raw data
8
data
5
programs comparing
4
comparing pearson
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!