It has been known for quite some time now that proton dynamics plays a key role in the structural ferroelectric (FE)/antiferroelectric (AFE) phase transition in the crystals belonging to the potassium dihydrogen phosphate crystal family. Mixed crystals belonging to this family having the composition M(1-x)(NW(4))(x)W(2)AO(4), where M = K, Rb, Cs, W = H, D, and A = P, As, exhibit proton glass behavior due to frustration between FE and AFE ordering; these proton glasses do not undergo any structural phase change but retain their room temperature structure down to very low temperatures. Single crystal neutron diffraction investigations of four mixed crystals with composition (K(1-x)(NH(4))(x)H(2)PO(4)), where x = 0.0, 0.29, 0.67 1.0, were undertaken with the intention to investigate the effect of the local structural deviations on the overall average structure of the crystals and correlate these structural changes to the presence or absence of a structural phase transition in these crystals. Hydrogen bonding is shown to play a key role in the changing nature of the mixed crystals as the composition varies from the potassium rich ferroelectric region to the proton glass region to the ammonium rich antiferroelectric region.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/25/7/075902DOI Listing

Publication Analysis

Top Keywords

mixed crystals
12
proton glasses
8
single crystal
8
crystal neutron
8
neutron diffraction
8
key role
8
phase transition
8
transition crystals
8
crystals belonging
8
proton glass
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!