Background: Deep brain stimulation (DBS) of either the globus pallidus interna (GPi) or subthalamic nucleus (STN) is similarly effective for treating somatomotor manifestations of Parkinson's disease (PD), but differences in how stimulation of each target affects oculomotor function are poorly understood.

Objective: We sought to determine if stimulation of the STN, but not the GPi, affects oculomotor function in PD patients.

Methods: Nineteen PD patients with DBS implants (8 bilateral GPi, 9 bilateral STN and 2 unilateral STN) were studied. Testing was performed with stimulation on, then off. Somatomotor function was tested using the Unified Parkinson's Disease Rating Scale (UPDRS) motor exam. For oculomotor testing, patients performed pro- and antisaccade tasks while monitored with an infrared eye tracker. Saccadic latency, saccadic intrusions, and square-wave jerks (SWJs) were measured for each trial.

Results: As expected, UPDRS motor scores improved with both GPi and STN stimulation. With GPi stimulation, there was no significant difference in oculomotor function with stimulation on or off. However, with STN stimulation on, there was a significant increase in the mean number of SWJs/s, as well as a significant decrease in latency for both pro- and antisaccade tasks.

Conclusion: Stimulation of either GPi or STN had similar effects on somatomotor function, but only STN stimulation significantly altered oculomotor function.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000343200DOI Listing

Publication Analysis

Top Keywords

oculomotor function
20
parkinson's disease
12
stn stimulation
12
stimulation
11
subthalamic nucleus
8
globus pallidus
8
pallidus interna
8
stn
8
stimulation stn
8
somatomotor function
8

Similar Publications

Quantitative comparison of a mobile, tablet-based eye-tracker and two stationary, video-based eye-trackers.

Behav Res Methods

January 2025

Department Neurophysics, Philipps-Universität Marburg, Fachbereich Physik, AG Neurophysik, Karl-Von-Frisch-Straße 8a, 35043, Marburg, Lahnberge, Germany.

The analysis of eye movements is a noninvasive, reliable and fast method to detect and quantify brain (dys)function. Here, we investigated the performance of two novel eye-trackers-the Thomas Oculus Motus-research mobile (TOM-rm) and the TOM-research stationary (TOM-rs)-and compared them with the performance of a well-established video-based eye-tracker, i.e.

View Article and Find Full Text PDF

C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells.

View Article and Find Full Text PDF

The Utility of Preoperative Phenylephrine Testing in Müller Muscle Conjunctival Resection Surgery for Involutional Ptosis.

Ophthalmic Plast Reconstr Surg

January 2025

Division of Orbital and Ophthalmic Plastic Surgery, Jules Stein Eye Institute, University of California, Los Angeles, California, U.S.A.

Purpose: Phenylephrine testing prior to Müller muscle conjunctival resection has traditionally been used to predict postoperative outcomes. The purpose of this study is to determine if preoperative phenylephrine testing impacts postoperative changes in eyelid position.

Methods: In this multicenter cross-sectional cohort study, 270 eyelids of participants with involutional ptosis and levator function >12 mm who underwent Müller muscle conjunctival resection were divided into 2 comparison groups.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis(ALS) has traditionally been managed as a neuromuscular disorder. However, recent evidence suggests involvement of non-motor domains. This study aims to evaluate the impact of APOE and MAPT genotypes on the cognitive features of ALS.

View Article and Find Full Text PDF

Sensation is dispensable for the maturation of the vestibulo-ocular reflex.

Science

January 2025

Department of Otolaryngology, Department of Neuroscience and Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.

Vertebrates stabilize gaze using a neural circuit that transforms sensed instability into compensatory counterrotation of the eyes. Sensory feedback tunes this vestibulo-ocular reflex throughout life. We studied the functional development of vestibulo-ocular reflex circuit components in the larval zebrafish, with and without sensation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!