Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study two-state protein folding in the framework of a toy model of protein dynamics. This model has an important advantage: it allows for an analytical solution for the sum of folding and unfolding rate constants [A. M. Berezhkovskii, F. Tofoleanu, and N.-V. Buchete, J. Chem. Theory Comput. 7, 2370 (2011)10.1021/ct200281d] and hence for the reactive flux at equilibrium. We use the model to test the Kramers-type formula for the reactive flux, which was derived assuming that the protein dynamics is described by a Markov random walk on a network of complex connectivity [A. Berezhkovskii, G. Hummer, and A. Szabo, J. Chem. Phys. 130, 205102 (2009)10.1063/1.3139063]. It is shown that the Kramers-type formula leads to the same result for the reactive flux as the sum of the rate constants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562346 | PMC |
http://dx.doi.org/10.1063/1.4776215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!