In this study, we address the issues associated with predicting usefully accurate heats of formation for moderately-sized molecules such as corannulene and C(60). We obtain a high-level theoretical heat of formation for corannulene through the use of reaction schemes that conserve increasingly larger molecular fragments between the reactants and products. The reaction enthalpies are obtained by means of the high-level, ab initio W1h thermochemical protocol, while accurate experimental enthalpies of formation for the other molecules involved in the reactions are obtained from the Active Thermochemical Tables (ATcT) network. Our best theoretical heat of formation for corannulene (Δ(f)H°(298)[C(20)H(10)(g)] = 485.2 ± 7.9 kJ mol(-1)) differs significantly from the currently accepted experimental value (Δ(f)H°(298)[C(20)H(10)(g)] = 458.5 ± 9.2 kJ mol(-1)), and this suggests that re-examination of the experimental data may be in order. We have used our theoretical heat of formation for corannulene to obtain a predicted heat of formation of C(60) through reactions that involve only corannulene and planar polyacenes. Current experimental values span a range of ~200 kJ mol(-1). Our reaction enthalpies are obtained by means of double-hybrid density functional theory in conjunction with a large quadruple-ζ basis set, while accurate experimental heats of formation (or our theoretical value in the case of corannulene) are used for the other molecules involved. Our best theoretical heat of formation for C(60) (Δ(f)H°(298)[C(60)(g)] = 2521.6 kJ mol(-1)) suggests that the experimental value adopted by the NIST thermochemical database (Δ(f)H°(298)[C(60)(g)] = 2560 ± 100 kJ mol(-1)) should be revised downward.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp312585r | DOI Listing |
Photosynthetica
January 2025
University of Reims Champagne-Ardenne, INRAE, RIBP, USC 1488, 51100 Reims, France.
High temperatures severely affect plant growth and development leading to major yield losses. These temperatures are expected to increase further due to global warming, with longer and more frequent heat waves. Rhamnolipids (RLs) are known to protect several plants against various pathogens.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Biology, University of Konstanz, Konstanz, Germany.
Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, Strasbourg F-67000, France.
The worldwide spread of antibiotic resistance is considered to be one of the major health threats to society. While developing new antibiotics is crucial, there is also a strong need for next-generation analytical methods for studying the physiological state of live bacteria in heterogeneous populations and their response to environmental stress. Here we report a single-cell high-throughput method to monitor changes in the bacterial cell envelope in response to stress based on ratiometric flow cytometry.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!