Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.
Materials with both high thermoelectric (TE) performance and excellent magnetocaloric (MC) properties near room temperature are of great importance for all-solid-state TE/MC hybrid refrigeration. A combination of such two critical characteristics, however, is hardly attainable in single phase compounds. Herein we report a composite material that comprises Bi-Sb-Te thermoelectric and Ni-Mn-In magnetocaloric components as an innovative thermoelectromagnetic material with dual functionalities.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Faculty of Electrical Engineering, Czestochowa University of Technology, 17 Al. Armii Krajowej, Częstochowa, PL-42200, Poland.
We report a complete set of elastic, piezooptic and photoelastic tensor constants of scheelite crystals CaMoO, BaMoO, BaWO and PbWO determined by density functional theory (DFT) calculations using the quantum chemical software package CRYSTAL17. The modulation parameter, i.e.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Faculty of Mechanical Engineering, Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
Nonlinear dynamic simulations of mechanical resonators have been facilitated by the advent of computational techniques that generate nonlinear reduced order models (ROMs) using the finite element (FE) method. However, designing devices with specific nonlinear characteristics remains inefficient since it requires manual adjustment of the design parameters and can result in suboptimal designs. Here, we integrate an FE-based nonlinear ROM technique with a derivative-free optimization algorithm to enable the design of nonlinear mechanical resonators.
View Article and Find Full Text PDFACS Omega
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brasil.
Direct laser writing (DLW) has been recognized as a unique technique for three-dimensional (3D) prototyping with resolution beyond the diffraction limit. One trend in DLW technologies is the use of polymers, given their favorable mechanical properties and optical quality, rendering them promising for the next generation of nonlinear photonic devices. However, absorptive properties that facilitate DLW processes may also hinder the performance of polymers as all-optical devices.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!