This study investigated the effects of quercetin on the anti-tumor effect of trichostatin A (TSA), a novel anticancer drug, in vitro and in vivo and the possible mechanisms of these effects in human lung cancer cells. We first showed that quercetin (5 µM) significantly increased the growth arrest and apoptosis in A549 cells (expressing wild-type p53) induced by 25 ng/mL of (82.5 nM) TSA at 48 h by about 25% and 101%, respectively. However, such enhancing effects of quercetin (5 µM) were not significant in TSA-exposed H1299 cells (a p53 null mutant) or were much lower than in A549 cells. In addition, quercetin significantly increased TSA-induced p53 expression in A549 cells. Transfection of p53 siRNA into A549 cells significantly but not completely diminished the enhancing effects of quercetin on TSA-induced apoptosis. Furthermore, we demonstrated that quercetin enhanced TSA-induced apoptosis through the mitochondrial pathway. Transfection of p53 siRNA abolished such enhancing effects of quercetin. However, quercetin increased the acetylation of histones H3 and H4 induced by TSA in A549 cells, even with p53 siRNA transfection as well as in H1299 cells. In a xenograft mouse model of lung cancer, quercetin enhanced the antitumor effect of TSA. Tumors from mice treated with TSA in combination with quercetin had higher p53 and apoptosis levels than did those from control and TSA-treated mice. These data indicate that regulation of the expression of p53 by quercetin plays an important role in enhancing TSA-induced apoptosis in A549 cells. However, p53-independent mechanisms may also contribute to the enhancing effect of quercetin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546961 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054255 | PLOS |
Environ Toxicol
January 2025
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russia.
Human carbonic anhydrase IX (CAIX) plays a key role in maintaining pH homeostasis of malignant neoplasms, thus creating a favorable microenvironment for the growth, invasion, and metastasis of tumor cells. Recent studies have established that inhibition of CAIX expressed on the surface of tumor cells significantly increases the efficacy of classical chemotherapeutic agents and makes it possible to suppress the resistance of tumor cells to chemotherapy, as well as to increase their sensitivity to drugs (in particular, to reduce the required dose of cytostatic agents). In this work, we studied the ability of new CAIX inhibitors based on substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides, to potentiate the cytostatic effect of gefitinib (selective inhibitor of epidermal growth factor receptor tyrosine kinase domain) under hypoxic conditions.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
The auxin-inducible degron (AID) system is widely used to study function of various proteins. The plant hormone auxin is used as an inducer in this system, which easily penetrates into the cells and causes proteasomal degradation of the protein of interest fused to a small degron tag. It is often assumed that as a plant hormone, auxin does not significantly affect physiology of animal cells.
View Article and Find Full Text PDFBioorg Chem
January 2025
Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China. Electronic address:
The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior.
View Article and Find Full Text PDFEur J Med Chem
January 2025
University of Pisa, Department of Chemistry and Industrial Chemistry, Via G. Moruzzi 13, I-56124, Pisa, Italy. Electronic address:
The novel diiron amine complexes [FeCp(CO)(NHR')(μ-CO){μ-CN(Me)(Cy)}]CFSO [R' = H, 3; Cy, 4; CHCHNH, 5; CHCHNMe, 6; CHCH(4-CHOMe), 7; CHCH(4-CHOH), 8; Cp = η-CH, Cy = CH = cyclohexyl] were synthesized in 49-92 % yields from [FeCp(CO)(μ-CO){μ-CN(Me)(Cy)}]CFSO, 1a, using a straightforward two-step procedure. They were characterized by IR and multinuclear NMR spectroscopy, and the structure of 7 was confirmed through X-ray diffraction analysis. Complexes 3-8 and the acetonitrile adducts [FeCp(CO)(NCMe)(μ-CO){μ-CN(Me)(R)}]CFSO (R = Cy, 2a; Me, 2b; Xyl = 2,6-CHMe, 2c) were assessed for their water solubility, octanol-water partition coefficient and stability in physiological-like solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!