Fecal samples from 976 children with gastroenteritis were collected and analyzed for group A rotavirus (RVA), in three different cities in Iraq between January 2008 and December 2008. RVA antigen was detected in 394 (40%) of the samples, and 98 samples were available for further genotype analyses using multiplex RT-PCR and sequence analyses for untypeable strains. The G/P-genotype combination was determined for 69 samples, and 19, 2 and 8 samples remained P-untypeable, G-untypeable and G/P-untypeable (UT), respectively. The most prevalent genotype was G2 (40%, 39/98) most often associated with P[6]. G1 was the second most common genotype (16%, 16/98) mainly associated with P[8] and P[UT]. G3, G4 and G9 were detected at a lower prevalence (3%, 11%, 3%, respectively), mainly associated with P[6]. Surprisingly, five G8P[6], and seven G12 RVA strains in combination with P[6] and P[8] were also detected for the first time in Iraq. Overall, a striking high prevalence of 47% of the analyzed samples possessed the P[6] genotype (65% of the P-typed RVA strains). Atypical genotype combinations such as G1P[4], G1P[6], G2P[8] or strains with mixed G-types were detected sporadically. The detection of unusual G8P[6] RVA strains prompted us to further analyze the NSP2, NSP3, NSP4 and NSP5 gene segments of three selected G8P[6] strains, resulting in their designation to the N2, T2, E2 and H2 genotypes, respectively. The VP7, VP4, NSP2, NSP3 and NSP5 gene segments clustered closely with common human RVA strains, whereas the NSP4 gene sequences were found to cluster with animal derived RVA strains, suggesting a potential reassortment event. The high prevalence of RVA strains with the G8, G12 and P[6] genotypes in combination with a DS-1-like genotype constellation in Iraq, needs to be monitored closely as these RVA strains might challenge the effectiveness of current RVA vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2012.12.003DOI Listing

Publication Analysis

Top Keywords

rva strains
28
high prevalence
12
strains
11
rva
10
samples samples
8
associated p[6]
8
nsp2 nsp3
8
nsp5 gene
8
gene segments
8
p[6]
6

Similar Publications

Molecular Characterization and Pathogenicity Analysis of Porcine Rotavirus A.

Viruses

November 2024

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.

Porcine rotavirus A (RVA) is one of the major etiological agents of diarrhea in piglets and constitutes a significant threat to the swine industry. A molecular epidemiological investigation was conducted on 2422 diarrhea samples from Chinese pig farms to enhance our understanding of the molecular epidemiology and evolutionary diversity of RVA. The findings revealed an average RVA positivity rate of 42% (943/2422), and the study included data from 26 provinces, primarily in the eastern, southern and southwestern regions.

View Article and Find Full Text PDF

A matched case-control study of porcine group A and C rotaviruses in a swine farrowing production system.

Vet Microbiol

December 2024

Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Blvd. West, Saint-Hyacinthe, Québec J2S 8E3, Canada; Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada. Electronic address:

Group A rotaviruses (RVA) and group C rotaviruses (RVC) are important enteric pathogens in swine. Comprehensive studies investigating porcine rotaviruses in Canada are necessary to enhance understanding of the frequency, impacts, and dynamics of these infections in swine herds. This study aims to estimate the prevalence of RVA and RVC, describe circulating strains, and assess the association of rotaviruses with diarrhea at the piglet, litter, and batch levels in Canadian farrowing swine productions.

View Article and Find Full Text PDF

Pathogenicity comparison between porcine G9P[23] and G5P[23] RVA in piglets.

Vet Microbiol

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China. Electronic address:

Rotavirus Group A (RVA) is a primary pathogen that causes viral diarrhea in humans and animals. Porcine rotaviruses (PoRVs) are widely epidemic in pig farms in China, causing great economic losses to the swine industry. In the past 30 years, the G5 RVA had been the main epidemic genotype in pig farms worldwide.

View Article and Find Full Text PDF

Epidemiological, molecular, and evolutionary characteristics of G1P[8] rotavirus in China on the eve of RotaTeq application.

Front Cell Infect Microbiol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Health Commission Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Introduction: This study, conducted in China prior to RotaTeq's launch, examined the epidemiological, molecular, and evolutionary features of the G1P[8] genotype RVA in children admitted with diarrhea, to aid in evaluating its efficacy and impact on G1P[8] RVA in China.

Methods: Data from the Chinese viral diarrhea surveillance network were collected from January 2016 to December 2018. RVA strains identified as the G1P[8] genotype were subjected to whole-genome sequencing.

View Article and Find Full Text PDF

Inter-genogroup reassortment of Rotavirus A (RVA) strains has highlighted the spread of unusual RVA strains worldwide. We previously reported the equine-like G3 RVA as the predominant strain in Indonesia in 2015-2016. However, since July 2017, typical human genotypes G1 and G3 have replaced these strains completely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!