Objective: To investigate the larvicidal activity of synthesized silver nanoparticles (Ag NPs) utilizing aqueous bark extract of Ficus racemosa (F. racemosa) was tested against fourth instar larvae of filariasis vector, Culex quinquefasciatus (Cx. quinquefasciatus) and japanese encephalitis vectors, Culex gelidus (Cx. gelidus).

Methods: The synthesized Ag NPs was characterized by UV-vis spectrum, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). The larvicidal activities were assessed for 24 h against the larvae of Cx. quinquefasciatus and Cx. gelidus with varying concentrations of aqueous bark extract of F. racemosa and synthesized Ag NPs. LC(50) and r(2) values were calculated.

Results: The maximum efficacy was observed in crude aqueous extract of F. racemosa against the larvae of Cx. quinquefasciatus and Cx. gelidus (LC(50)=67.72 and 63.70 mg/L; r(2)=0.995 and 0.985) and the synthesized Ag NPs (LC(50)=12.00 and 11.21 mg/L; r(2)=0.997 and 0.990), respectively. Synthesized Ag NPs showed the XRD peaks at 2 θ values of 27.61, 29.60, 35.48, 43.48 and 79.68 were identified as (210), (121), (220), (200) and (311) reflections, respectively. The FTIR spectra of Ag NPs exhibited prominent peaks at 3,425, 2,878, 1,627 and 1,382 in the region 500-3,000 cm(-1). The peaks correspond to the presence of a stretching vibration of (NH) C=O group. SEM analysis showed shape in cylindrical, uniform and rod with the average size of 250.60 nm.

Conclusions: The biosynthesis of silver nanoparticles using bark aqueous extract of F. racemosa and its larvicidal activity against the larvae of disease spreading vectors. The maximum larvicidal efficacy was observed in the synthesized Ag NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1995-7645(13)60002-4DOI Listing

Publication Analysis

Top Keywords

synthesized nps
20
larvicidal activity
12
silver nanoparticles
12
aqueous extract
12
extract racemosa
12
synthesized silver
8
nanoparticles bark
8
bark aqueous
8
extract ficus
8
ficus racemosa
8

Similar Publications

Zwitterionic Poly(ethylene glycol) Nanoparticles Minimize Protein Adsorption and Immunogenicity for Improved Biological Fate.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.

View Article and Find Full Text PDF

TiO-sodium alginate core-shell nanosystem for higher antimicrobial wound healing application.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.

Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.

View Article and Find Full Text PDF

Ultrasonically Activated Liquid Metal Catalysts in Water for Enhanced Hydrogenation Efficiency.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Hydride (H) species on oxides have been extensively studied over the past few decades because of their critical role in various catalytic processes. Their syntheses require high temperatures and the presence of hydrogen, which involves complex equipment, high energy costs, and strict safety protocols. Hydride species tend to decompose in the presence of atmospheric oxygen and water, which reduces their catalytic activities.

View Article and Find Full Text PDF

Biodegradable Vanadium-Based Nanomaterials for Photothermal-Enhanced Tumor Ferroptosis and Pyroptosis.

ACS Appl Mater Interfaces

January 2025

Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.

The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.

View Article and Find Full Text PDF

Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!