Variovorax sp.-mediated biodegradation of the phenyl urea herbicide linuron at micropollutant concentrations and effects of natural dissolved organic matter as supplementary carbon source.

Appl Microbiol Biotechnol

Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20, 3001, Leuven, Belgium,

Published: November 2013

In nature, pesticides are often present as micropollutants with concentrations too low for efficient biodegradation and growth of heterotrophic pollutant-degrading bacteria. Instead, organic carbon present in environmental dissolved organic matter (eDOM) constitutes the main carbon source in nature. Information on how natural organic carbon affects degradation of pollutants and micropollutants, in particular, is however poor. Linuron-degrading Variovorax sp. strains SRS16, WDL1, and PBLH6 and a triple-species bacterial consortium, from which WDL1 originated, were examined for their ability to degrade linuron at micropollutant concentrations and the effect hereon of different eDOM formulations of varying biodegradability as supplementary C-source was explored. Individual strains and the consortium degraded linuron at initial concentrations as low as 1 μg L(-1) till concentrations below 4 ng L(-1). Degradation kinetics differed among strains with rates that differed up to 70-fold at the lowest linuron concentrations and with lag phases ranging from 0 to 7 days. Linuron biodegradation by the individual strains was inhibited by an easily biodegradable compound such as citrate but stimulated by eDOM at a linuron concentration of 10 mg L(-1). Effects were strongly reduced or became non-existent at micropollutant linuron concentrations. Effects of eDOM on degradation at 10 mg L(-1) linuron by WDL1 were reduced when WDL1 was incubated together with its original consortium members. This is the first report on eDOM effects on degradation of pesticides at micropollutant concentrations and indicates these effects are limited and depend on linuron and eDOM concentrations, eDOM quality, and the bacterial culture.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-013-4690-7DOI Listing

Publication Analysis

Top Keywords

micropollutant concentrations
12
linuron
9
concentrations
9
linuron micropollutant
8
concentrations effects
8
dissolved organic
8
organic matter
8
carbon source
8
source nature
8
concentrations low
8

Similar Publications

Deteriorated abatement of micropollutants in biological activated carbon filters with aged media: Key role of permeability.

Water Res

December 2024

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Biological activated carbon (BAC) filtration is vital for the abatement of micropollutants in drinking water. However, limited information is available on contaminant removal in BAC filters with aged media (e.g.

View Article and Find Full Text PDF

Photodegradation of steroid hormone micropollutants with palladium-porphyrin coated porous PTFE of varied morphological and optical properties.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

In flow-through reactors, the photodegradation rate can be improved by enhancing contact and increasing the photocatalyst loading. Both can be attained with a higher surface-to-volume ratio. While previous studies focused on thin membranes (30 - 130 µm) with small pore sizes of 20 - 650 nm, this work employed poly(tetrafluoroethylene) (PTFE) supports, of which pore sizes are in the order of 10 µm, while the porosities and thicknesses are variable (22.

View Article and Find Full Text PDF

Advanced micropollutant and phosphorus removal with superfine powdered activated carbon and pile cloth media filtration.

Water Res

December 2024

Department of Civil and Environmental Engineering Sciences, Institute IWAR, Chair of Water and Environmental Biotechnology, Technical University of Darmstadt, Germany. Electronic address:

Organic micropollutants (OMP) are ubiquitous in aquatic ecosystems and have a proven negative impact on the environment and drinking water resources. To remove OMP from municipal wastewater, the use of superfine Powdered Activated Carbon (sPAC) (d = 1.0 µm) compared to Powdered Activated Carbon (PAC) (d = 30.

View Article and Find Full Text PDF

Inter-island variability in trace elements and trophic ecology of Brown Booby (Sula leucogaster) in the South Atlantic.

Environ Pollut

January 2025

Olaf Malm Laboratory of Environmental Studies (LEA-OM), Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902, Rio de Janeiro, Brazil; Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of Research (FOCUS), University of Liege, Belgium.

This study investigates essential (Mg, Ca, Fe, Mn, Cu, Zn, Se, Ni) and non-essential (Li, Be, Cr, Rb, Sr, Cs, Cd, Sn, Ba, and Pb) element concentrations and stable isotope (δC, δN, δS) compositions in feathers of Brown Boobies (Sula leucogaster) from three distinct Atlantic islands: the Archipelagos of Saint Peter and Saint Paul (SPSP), Abrolhos, and Cagarras. We aimed to investigate the ecological and environmental factors influencing these seabird populations and assess potential variations in contaminant exposure and dietary habits based on location, sex, and maturity stages. Our finding revealed significant geographical differences in trace element concentrations.

View Article and Find Full Text PDF

The escalating challenge of eliminating persistent micropollutants from aquatic environments acted as a driving force for the development of innovative Advanced Oxidation Processes (AOPs). Among various AOPs, Light-Activated Persulfate (LAP) stands out for its efficacy due to its homogeneous nature and the potential for coupling with renewable sources, leading to enhanced sustainability. From this perspective, this review summarizes the research on LAP for the degradation of micropollutants over the previous six years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!