We have previously shown that specific COX-2 inhibitors, including DuP 697, have anti-proliferative effects on mesothelioma cells and potentiate the cytotoxicity of pemetrexed. Here, we used a novel proteomic approach to explore the mechanism of action of this agent. COX-2-positive cell lines MSTO-211H (mesothelioma) and A549 (lung cancer) were exposed to DuP 697 for 72 h. Drug carrier only was added to control cells. Extracted proteins from treated and control cells were analysed using a comparative proteomic platform. Differentially expressed proteins, identified by the Panorama Xpress Profiler725 antibody microarray were submitted to Ingenuity Pathway Analysis. A total of 32 unique differentially expressed proteins were identified with a significant (>1.8-fold) difference in expression between treated and untreated cells in at least one cell line. Five molecules, BCL2L1 (Bcl-xL), BID, CHUK (IKK), FASLG and RAF1, were mapped to the Apoptosis Signaling pathway following Ingenuity Pathway Analysis. BCL2L1 (Bcl-xL) and BID were analysed using immuno-blotting and differential expression was confirmed. Proteomic (antibody microarray) analysis suggests that the mechanism of action of DuP 697 may be exerted via the induction of apoptosis. The antibody microarray platform can be utilised to explore the molecular mechanism of action of novel anticancer agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2013.1784 | DOI Listing |
Sci Rep
December 2024
Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
PrPc is expressed in various tumors and is associated with cancer progression, but previous studies have shown conflicting results regarding its relationship with patient prognosis-potentially due to differences in the antibodies used. This study aimed to clarify the relationship between PrPc expression and primary esophageal squamous cell carcinoma (ESCC) and primary hepatocellular carcinoma (HCC) using a novel anti-PrPc antibody, 4AA-m, noted for its high specificity and sensitivity. We used flow cytometry to detect PrPc expression in ESCC and HCC cell lines.
View Article and Find Full Text PDFHistopathology
December 2024
Goethe University Frankfurt, Medical Clinic 1, University Hospital, Frankfurt am Main, Germany.
Aims: Anti-claudin-18.2 (CLDN18.2) therapy was recently approved for the treatment of gastric or gastro-oesophageal junction adenocarcinoma.
View Article and Find Full Text PDFMethods Protoc
November 2024
Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
Immunohistochemical (IHC) studies of formalin-fixed paraffin-embedded (FFPE) samples are a gold standard in oncology for tumor characterization, and the identification of prognostic and predictive markers. However, despite the abundance of archived FFPE samples, their research use is limited due to the labor-intensive nature of IHC on large cohorts. This study aimed to create a high-throughput workflow using modern technologies to facilitate IHC biomarker studies on large patient groups.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
Background: Glioblastoma (GB) is the stage IV of glioma and mesenchymal GB represents the most common and malignant subtype characterized with elevated expression of a mesenchymal marker YKL-40 and resistance to immune drug therapy. Here, we determined if YKL-40 regulates kynurenine (Kyn) pathway (KP) metabolism that contributes to establishing an immune suppressive microenvironment in GB.
Methods: Tumor cells expressing YKL-40 from GB patients were isolated and activated cellular metabolisms were identified via gene microarray analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!