The excited-state proton transfer (ESPT) via proton transfer wires in green fluorescent protein (GFP) plays an important role on the spectroscopic of GFP. In this work, we use the proton transfer wires and the chromophore complex to simulate the tautomer structures of neutral state and the intermediate state in wt-GFP. And we employ the time-dependent density functional theory combined with the sum-over-states method to calculate the one- and two-photon absorption properties of these complexes in GFP. We obtain the large stokes shift from 383 nm to 500 nm in GFP when simulating the ESPT process by these isomerous H-bonding complexes. We find that the TPA spectrum of the H-bonding complex of the intermediate state agrees more with experimental measurement than that of the H-bonding complex of the neutral state. The TPA spectrum of GFP might be mainly dominated by the structure which is similar to the H-bonding complex of intermediate state. Further, we simulate another kind of complex which possess short-strong hydrogen bonds in proton transfer wires, and find that TPA properties of these complexes are much stronger than that of the complexes with the long distance proton wires from GFP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2ob26914g | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China. Electronic address:
For the typical ESIPT process, the proton transfer process is often completed via the intramolecular hydrogen bond (IHB) with oxygen or nitrogen as proton donor or proton acceptor. In recent years, the ESIPT process for sulfur-containing hydrogen bonds has received more and more attention, but it has been rarely reported. We systematically studied the ESIPT processes and photophysical properties of 2-(benzothiophene-2-yl)-3-hydroxy-4H-chromen-4-one (BTOH), 2-(benzothiophene-2-yl)-3-mercapto-4H-chromen-4-one (BTSH) and 2-(benzothiophen-2-yl)-3-hydroxy-4H-chromene-4-thione (BTS) at the HISSbPBE/6-31+G(d,p) and TD-HISSbPBE/6-31+G(d,p) computational level.
View Article and Find Full Text PDFTalanta
December 2024
China Nuclear Power Engineering Co., Ltd., Beijing, 100840, PR China.
The real-time detection of gaseous HO and its typical isotopic molecules, e.g., HO, DO, HDO, and HTO, is highly desirable in many fundamental scientific studies and practical monitoring, such as mechanistic studies of HO-involved chemical reactions and radiation risk warning of abnormal HTO emissions.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States.
Added electrons and holes in semiconducting (nano)materials typically occupy "trap states," which often determine their photophysical properties and chemical reactivity. However, trap states are usually ill-defined, with few insights into their stoichiometry or structure. Our laboratory previously reported that aqueous colloidal TiO nanoparticles prepared from TiCl + HO have two classes of electron trap states, termed and .
View Article and Find Full Text PDFACS Cent Sci
December 2024
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Electrochemical conversion of CO to hydrocarbons is a promising approach to carbon neutrality and energy storage. The formation of reaction intermediates involves crucial steps of proton transfer, making it essential to understand the role of protons in the electrochemical process to control the product selectivity and elucidate the underlying catalytic reaction mechanism of the CO electrochemical reduction (CORR). In this work, we proposed a strategy to regulate product selectivities by tuning local proton transport rates through a surface resin layer over cuprous oxides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!