Accurate positioning of a sample is one of the primary challenges in laser micromanufacturing. There are a number of methods that allow detection of the surface position; however, only a few of them use the beam of the processing laser as a basis for the measurement. Those methods have an advantage that any changes in the processing laser beam can be inherently accommodated. This work describes a direct, contact-free method to accurately determine workpiece position with respect to the structuring laser beam focal plane based on nonlinear harmonic generation. The method makes workpiece alignment precise and time efficient due to ease of automation and provides the repeatability and accuracy of the surface detection of less than 1 μm.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.52.000415DOI Listing

Publication Analysis

Top Keywords

processing laser
8
laser beam
8
laser
5
laser focus
4
focus positioning
4
positioning method
4
method submicrometer
4
submicrometer accuracy
4
accuracy accurate
4
accurate positioning
4

Similar Publications

Energetic Materials Photolysis Footprint in High-Order Harmonic Generation.

J Phys Chem A

January 2025

School of Physics and Electronic Technology, Liaoning Normoal University, Dalian 116081, People's Republic of China.

Photolysis of energetic materials offers safer and more controllable advantages compared to traditional ignition methods. Tracking the group and electron dynamics during the photolysis of energetic materials is currently a hot and challenging topic. In this work, we used a time-dependent density functional theory (TDDFT) to study the high-order Harmonic generation (HHG) dynamics induced by strong laser interaction with an isolated CHNO molecule with varying C-N bond lengths.

View Article and Find Full Text PDF

The efficiency of earth-abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells has been lagging behind the Shockley-Queisser limit primarily due to the presence of deep-level defects. These deep-level defects cause critical issues such as short carrier diffusion length, significant band tailing, and a large open-circuit voltage (VOC) deficit, ultimately leading to low device efficiency. To address these issues, we propose a post-fabrication defect healing strategy by dip-coating the CZTSSe film in dimethylformamide (DMF) solvent.

View Article and Find Full Text PDF

Dissimilar laser welding of martensitic AISI 1060 carbon steel and Duplex Stainless Steel 2205 was performed based on an experimental and numerical study. The experiments were then conducted based on central composite design experiments (CCD) and analyzed via the response surface methodology (RSM) by considering the effect of laser welding process parameters (incident laser power, speed of welding, nozzle distance and deviation of laser beam) on the weld joint characterization. The experimental results showed that the laser power had a remarkable effect on the melt pool depth.

View Article and Find Full Text PDF

We report herein a facile synthesis, characterization, and the electron transfer reaction of a novel light-harvesting material composed of laser-induced graphene (LIG) functionalized with the photoactive 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin tetra(-toluenesulfonate) dye (TTMAPP). LIG was easily fabricated on the surface of a polyimide sheet using VersaLASER 3.6 (VLS 3.

View Article and Find Full Text PDF

g-CN modified flower-like CuCoO array on nickel foam without binder for high-performance supercapacitors.

RSC Adv

January 2025

School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan 030006 China

This study investigates the impact of integrating g-CN into CuCoO electrodes on electrochemical performance working as binder-free electrodes. Flower-like CuCoO nanostructures on nickel foam are decorated with few-layer g-CN using a secondary hydrothermal process. The hierarchical g-CN/CuCoO nanoflower electrode demonstrates a specific capacity of 247.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!