The specific processes that cause aging of the cardiac tissue remain elusive. C57BL/6 (B6) mice are commonly used for investigating age-related diseases in mammals. We thus sought to evaluate the cardiac aging process in B6 mice. Cardiac tissues from the newborn (B6 NB), 2month-old (B6 2M) and 21-27month-old B6 mice (B6 aged) were used for the investigation. Several age-related cellular processes were evaluated, including telomere shortening, changes in p53 and p16 expression, changes in mitochondria DNA expression and DNA deletion, and alteration of mitochondria. We found that the aging of the B6 mice cardiac tissue is associated with the maintenance of telomere length, increased expression of p53 and p16, mild changes in mitochondrial DNA expression but widespread DNA deletion, and significant alterations of the mitochondrial ultrastructure within the cardiac tissue. The results of our studies suggest that mitochondrial DNA deletions, which affect the mitochondrial ultrastructure, cytochrome C oxidase activity, and p53 expression, are significantly associated with cardiac aging and may be a source of age-related heart failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exger.2013.01.005 | DOI Listing |
Curr Top Dev Biol
January 2025
Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States. Electronic address:
All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFAustralas J Ageing
March 2025
Gazi University Faculty of Medicine, Department of Geriatric Medicine, Ankara, Turkey.
Objectives: There are no studies examining the prevalence of social frailty and associated factors in low- and middle-income countries. This study aimed to assess the prevalence of social frailty and identify the contributing factors among older adults in Türkiye.
Methods: This cross-sectional study included 570 participants aged 65 and older, all outpatients at a geriatric clinic.
Lancet Reg Health Eur
March 2025
Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France.
Background: Ultra-processed food (UPF) consumption has been linked with higher risk of mortality. This multi-centre study investigated associations between food intake by degree of processing, using the Nova classification, and all-cause and cause-specific mortality.
Methods: This study analyzed data from the European Prospective Investigation into Cancer and Nutrition.
Rev Cardiovasc Med
January 2025
Section of Cardiovascular Imaging, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
With the aging of the general population and the rise in surgical and transcatheter aortic valve replacement, there will be an increase in the prevalence of prosthetic aortic valves. Patients with prosthetic aortic valves can develop a wide range of unique pathologies compared to the general population. Accurate diagnosis is necessary in this population to generate a comprehensive treatment plan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!