It is generally believed that the development of neuropathic pain primarily results from injuries to sensory afferent fibers. Recent studies found that injuries to the motor efferent fibers (e.g. ventral root transection) also contribute to the development of neuropathic pain. Furthermore, an increase in brain-derived neurotrophic factor (BDNF) synthesis has been found in the ventral root transection model, suggesting a possible role of BDNF in this model. To determine the role of BDNF, we observed the effects of intrathecal antibody against BDNF treatment on ventral root transection-induced mechanical hyperalgesia. Paw withdrawal thresholds to mechanical stimuli were measured before and after surgery. The results showed that ventral root transection in rats produced a significant, lasting decrease of mechanical withdrawal thresholds, presenting the development of mechanical hyperalgesia. Intrathecal antibody against BDNF treatment markedly inhibited ventral root transection-induced mechanical hyperalgesia in a dose-related manner. The findings suggest that BDNF-mediated signaling pathway within spinal cord may be involved in the development of neuropathic pain involving injuries to motor efferent fibers.

Download full-text PDF

Source
http://dx.doi.org/10.1097/WNR.0b013e32835d4b97DOI Listing

Publication Analysis

Top Keywords

ventral root
24
mechanical hyperalgesia
16
root transection
16
development neuropathic
12
neuropathic pain
12
brain-derived neurotrophic
8
neurotrophic factor
8
transection rats
8
injuries motor
8
motor efferent
8

Similar Publications

Guillain-Barré syndrome (GBS) is a complex and potentially life-threatening disease, representing the most common cause of acute neuromuscular paralysis worldwide. Its diagnosis is primarily based on clinical findings, often complemented by electrophysiological studies and laboratory investigations. Therefore, knowledge of the clinical signs and symptoms is essential to make a prompt diagnosis and allow timely initiation of therapeutic interventions.

View Article and Find Full Text PDF

Background: It is very well known that the supraclavicular nerve (SCN) which occupies the inferior part of the superficial cervical plexus basically originates from the ventral rami of C2-C4, then travels caudally into the investing layer of the deep cervical fascia (IL-DCF) alternatively termed the "prevertebral fascia."

Methods: This cadaveric study (a total of 6 soft-embalmed cadavers and bilateral dissections, i.e.

View Article and Find Full Text PDF

Risk of intrafascicular spread after deliberate ex vivo intraneural injections of brachial plexus nerve roots.

Br J Anaesth

January 2025

Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA; CEU-San-Pablo University School of Medicine, Madrid, Spain; Department of Anesthesiology, Madrid-Montepríncipe University Hospital, Madrid, Spain. Electronic address:

Background: We investigated the intraneural spread of injected fluid in brachial plexus nerve roots, examining the potential for intrafascicular spread and identifying influencing factors.

Methods: Twelve deliberate ultrasound-guided intraneural injections were performed at the ventral rami of the brachial plexus nerve roots at their exits from the neuroforamina in six fresh, unembalmed, cryopreserved human cadavers. A 22-G, 30-degree bevel echogenic regional anaesthesia needle was used.

View Article and Find Full Text PDF

CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.

View Article and Find Full Text PDF

Rationale: Ependymomas are commonly prevalent intramedullary neoplasms in adults, with hardly any cases of exophytic extramedullary ependymoma being reported. Meningiomas, on the contrary, are one of the most common intradural extramedullary (IDEM) tumors. However, the occurrence of both IDEM tumors simultaneously is extremely rare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!