The contribution of mesoaccumbens dopamine transmission to intracranial self-stimulation is well-established. However, although the nucleus accumbens comprises two main subregions, the shell and the core, little is known of the contribution of each to this behaviour. Our first aim was to study the effects of d-amphetamine infusions into the shell and core in order to understand their relative importance to reward and operant responding. Our second aim was to examine the contribution of a lesser studied group of dopamine neurons, those within the mesohabenular pathway, to intracranial self-stimulation. Male Sprague-Dawley rats were implanted with bilateral cannulae in the nucleus accumbens shell, core or in the lateral habenula and a monopolar stimulation electrode in the posterior mesencephalon, a brain site that is sensitive to changes in dopamine transmission. Using curve-shift scaling, we measured the reward- and performance-enhancing effects of intra-accumbens (1-20 μg) and intra-habenular (10-40 μg) infusions of d-amphetamine or vehicle. Within the nucleus accumbens, the use of multiple doses and long test sessions allowed us to observe an interaction between drug effect and infusion site. We show, for the first time, differences in the minimal doses necessary to enhance rewarding effectiveness and operant responding, in the magnitude of these enhancements as well as in their duration. Conversely, regardless of dose, intra-habenular D-amphetamine did not alter rewarding effectiveness or operant rate, highlighting the differential contribution of mesoaccumbens and mesohabenular dopamine pathways to intracranial self-stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2013.01.005 | DOI Listing |
Sex Health
January 2025
Mount Sinai Heath System, Center for Transgender Medicine and Surgery, 275 7th Avenue, 15th Floor, New York, NY 10001, USA.
Background In the healthcare setting, transgender patients are often marginalized, face discrimination and have limited access to high-quality gender-affirming care, such as gender-affirming surgery (GAS). As a result, the available data pertaining to GAS are often based on convenience samples, and the majority of published studies in the US are cross-sectional. Transgender people may undergo GAS to align their bodies with their gender identities.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Psychology, Ludwig Maximilian University Munich, Munich, Germany.
Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.
View Article and Find Full Text PDFACS Sens
January 2025
Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
The simultaneous detection of electroencephalography (EEG) signals and neurotransmitter levels plays an important role as biomarkers for the assessment and monitoring of emotions and cognition. This paper describes the development of boron and nitrogen codoped graphene-diamond (BNGrD) microelectrodes with a diameter of only 200 μm for sensing EEG signals and dopamine (DA) levels, which have been developed for the first time. The optimized BNGrD microelectrode responded sensitively to both EEG and DA signals, with a signal-to-noise ratio of 9 dB for spontaneous EEG signals and a limit of detection as low as 124 nM for DA.
View Article and Find Full Text PDFInt Arch Otorhinolaryngol
January 2025
Department of Otolaryngology, Hospital das Clínicas, Faculty of Medicine, Universidade de São Paulo, São Paulo, SP, Brazil.
Adults with cochlear implants (CIs) need periodic programming of their speech processors to take advantage of alternative adjustments. However, this requires patients to attend the CI center in person. To evaluate the feasibility of speech processor (SP) self-programming with remote assistance in CI users.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!