Vascular endothelial growth factor (VEGF), an angiogenic factor, was found to modulate synaptic plasticity by affecting K(+) and Ca(2+) channels and protect neuron from death by depressing glutamatergic transmission. However, whether VEGF also modulates neuronal activity through modulating voltage-gated Na(+) channels (VGSCs), a main determinant of neuronal excitability, we observed the effects of VEGF on Na(+) channel properties and function on cultured rat hippocampal neurons through whole-cell patch-clamp recording. We found that VEGF decreased the Na(+) channel excitability by shifting the voltage-dependence of steady-state inactivation to more hyperpolarized direction, and increasing the time constants of recovery from inactivation without significantly affecting the activation process. The effect of VEGF on Na(+) channel steady-state inactivation was inhibited by the specific VEGF Flk-1 receptor antagonist SU1498, but was not affected by protein kinase C (PKC)-activator 1-oleoyl-2-acetyl-sn-glycerol (OAG). Furthermore, the inhibition of Na(+) currents by VEGF was frequency-dependent. In addition, the frequency of neuron firing evoked by current injection was reversibly depressed by VEGF. Therefore, our results suggest a potential role of VGSCs in the modulation of VEGF on neuronal excitability.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b12-00841DOI Listing

Publication Analysis

Top Keywords

na+ channel
16
vegf
9
vascular endothelial
8
endothelial growth
8
growth factor
8
voltage-gated na+
8
channel properties
8
cultured rat
8
rat hippocampal
8
hippocampal neurons
8

Similar Publications

Background: Allergic rhinitis (AR) is a common cause of chronic cough, linked to dysregulated airway C- and Aδ-fibres through inflammatory mediators. Despite the limited efficacy of current antitussive therapies, recent studies show that the Na1.7 inhibitor can block cough in naïve guinea pigs.

View Article and Find Full Text PDF

Introduction: Hypoalgesic inflammatory bowel disease (IBD) may provide critical insights into human abdominal pain. This condition was previously associated with homozygosity for a polymorphism (rs6795970, A1073V; 1073 val/val ) related to Na v 1.8, a voltage-gated sodium channel preferentially expressed on nociceptors.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

The P2-NaMnO cathode material has long been constrained by phase transitions induced by the Jahn-Teller (J-T) effect during charge-discharge cycles, leading to suboptimal electrochemical performance. In this study, we employed a liquid phase co-precipitation method to incorporate Ti during the precursor MnO synthesis, followed by calcination to obtain NaTiMnO materials. We investigated the effects of Ti doping on the structure, morphology, Mn concentration, and Na diffusion coefficients of NaTiMnO.

View Article and Find Full Text PDF

In-situ synthesis of FeS nanoparticles enhances Sulfamethoxazole degradation via accelerated electron transfer in anaerobic bacterial communities.

Water Res

December 2024

College of Water Sciences, Beijing Normal University, Beijing 100875, China; Beijing ENFI Environmental Protection Co., Ltd., Beijing, 100038, China.

The impact of nanominerals on microbial electron transfer and energy metabolism strategies during pollutant degradation remains uncertain. This study used in situ synthesized FeS nanoparticles (FeS NPs) to increase the degradation efficiency of SMX by anaerobic bacterial communities from 25.80 % to 47.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!