The specialized salt glands on the epidermis of halophytic plants secrete excess salts from tissues by a mechanism that is poorly understood. We examined the salt glands as putative salt and water bi-regulatory units that can respond swiftly to altering environmental cues. The tropical mangrove tree species (Avicennia officinalis) is able to grow under fluctuating salinities (0.7-50.0 dS m(-1)) at intertidal zones, and its salt glands offer an excellent platform to investigate their dynamic responses under rapidly changing salinities. Utilizing a novel epidermal peel system, secretion profiles of hundreds of individual salt glands examined revealed that these glands could secrete when exposed to varying salinities. Notably, rhythmic fluctuations observed in secretion rates were reversibly inhibited by water channel (aquaporin) blocker, and two aquaporin genes (PIP and TIP) preferentially expressed in the salt gland cells were rapidly induced in response to increasing salt concentration. We propose that aquaporins are involved and contribute to the re-absorption of water during salt removal in Avicennia officinalis salt glands. This constitutes an adaptive feature that contributes to salt balance of trees growing in saline environments where freshwater availability is limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.12068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!