Background: Women facing social and economic disadvantage in stressed communities of developing countries are at greater risk due to health problems. This paper investigates the relationships between structural, health and psychosocial predictors among women in mining and agricultural communities. This paper is a report of a study of the predictors of the health-related quality of life among Indian women in mining and agricultural communities.
Methods: A descriptive cross-sectional research design was used. The instruments used are SF-36 Health Survey and Coping Strategy Checklist. ANOVA, MANOVA and GLM were used in the analysis. The study was conducted between January-September 2008 with randomly selected women in a mining (145) and an agricultural community (133) in India.
Results: Women in the agricultural community had significantly increased Physical Health, Mental Health and SF36 scores compared with those in the mining community. Years of stay, education and employment were significant predictors among women in the agricultural community. 39% (33%) and 40% (26%) of the variance in Physical and Mental health respectively among women in agricultural and mining communities are predicted by the structural, health and psychosocial variables.
Conclusion: Perceived health status should be recognised as an important assessment of Physical and Mental Health among women in rural stressed communities. Cognitive, emotional and behavioural coping strategies are significant predictors of health related quality of life. Implications. Nurses should use the SF-36 as a diagnostic tool for assessing health related quality of life among women and discuss coping strategies, so that these can target women's adaptive behaviour. This should be an essential part of the nursing process for facilitating adaptive process for improved health related quality of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639187 | PMC |
http://dx.doi.org/10.1186/1477-7525-11-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!