Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to document patterns of oligodendrocyte vulnerability to TBI and determine whether posttraumatic hypothermia prevents oligodendrocyte cell loss. Sprague Dawley rats underwent moderate fluid percussion brain injury. Thirty minutes after TBI, brain temperature was reduced to 33°C for 4 hrs or maintained at normothermic levels (37°C). Animals were perfusion-fixed for quantitative immunohistochemical analysis at 3 (n=9) or 7 (n=9) days post-TBI. Within the cerebral cortex, external capsule and corpus callosum, numbers of APC-CC1 immunoreactive oligodendrocytes at 3 and 7 days following TBI were significantly decreased compared to sham operated rats (p<0.02). Double-labeling studies showed that vulnerable oligodendrocytes expressed increased Caspase 3 activation compared to sham. Posttraumatic hypothermia significantly reduced the number of CC1 positive oligodendrocytes lost after normothermia TBI in white matter tracts (p<0.01). This model of TBI leads to quantifiable regional patterns of oligodendrocyte vulnerability. Posttraumatic hypothermia protects oligodendrocytes by interfering with Caspase 3-mediated cell death mechanisms. Therapeutic hypothermia may improve functional outcome by attenuating trauma-induced oligodendrocyte cell death, subsequent demyelination and circuit dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547398 | PMC |
http://dx.doi.org/10.1089/ther.2010.0011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!