A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Direct homo- and hetero-interactions of MeCP2 and MBD2. | LitMetric

AI Article Synopsis

  • Epigenetic marks like methylation are crucial for mammalian development, affecting gene expression and chromatin structure.
  • Researchers found that the MBD protein family, particularly MeCP2 and MBD2, increase during cell differentiation and influence chromatin clustering.
  • Interaction assays revealed strong self and cross-associations between MeCP2 and MBD2, indicating they may work together to organize chromatin fibers, providing insights into MBD's role in chromatin architecture.

Article Abstract

Epigenetic marks like methylation of cytosines at CpG dinucleotides are essential for mammalian development and play a major role in the regulation of gene expression and chromatin architecture. The methyl-cytosine binding domain (MBD) protein family recognizes and translates this methylation mark. We have recently shown that the level of MeCP2 and MBD2, two members of the MBD family, increased during differentiation and their ectopic expression induced heterochromatin clustering in vivo. As oligomerization of these MBD proteins could constitute a factor contributing to the chromatin clustering effect, we addressed potential associations among the MBD family performing a series of different interaction assays in vitro as well as in vivo. Using recombinant purified MBDs we found that MeCP2 and MBD2 showed the stronger self and cross association as compared to the other family members. Besides demonstrating that these homo- and hetero-interactions occur in the absence of DNA, we could confirm them in mammalian cells using co-immunoprecipitation analysis. Employing a modified form of the fluorescent two-hybrid protein-protein interaction assay, we could clearly visualize these associations in single cells in vivo. Deletion analysis indicated that the region of MeCP2 comprising amino acids 163-309 as well the first 152 amino acids of MBD2 are the domains responsible for MeCP2 and MBD2 associations. Our results strengthen the possibility that MeCP2 and MBD2 direct interactions could crosslink chromatin fibers and therefore give novel insight into the molecular mechanism of MBD mediated global heterochromatin architecture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546041PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053730PLOS

Publication Analysis

Top Keywords

mecp2 mbd2
20
homo- hetero-interactions
8
mbd family
8
amino acids
8
mecp2
6
mbd2
6
mbd
5
direct homo-
4
hetero-interactions mecp2
4
mbd2 epigenetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!