A Three-Stage Mechanistic Model for Ammonia Borane Dehydrogenation by Shvo's Catalyst.

Organometallics

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661.

Published: October 2012

We propose a mechanistic model for three-stage dehydrogenation of ammonia borane (AB) catalyzed by Shvo's cyclopentadienone-ligated ruthenium complex. We provide evidence for a plausible mechanism for catalyst deactivation, the transition from fast catalysis to slow catalysis, and relate those findings to the invention of a second-generation catalyst that does not suffer from the same deactivation chemistry.The primary mechanism of catalyst deactivation is borazine-mediated hydroboration of the ruthenium species that is the active oxidant in the fast catalysis case. This transition is characterized by a change in the rate law for the reaction and changes in the apparent resting state of the catalyst. Also, in this slow catalysis situation, we see an additional intermediate in the sequence of boron, nitrogen species, aminodiborane. This occurs with concurrent generation of NH(3), which itself does not strongly affect the rate of AB dehydrogenation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546831PMC
http://dx.doi.org/10.1021/om300562dDOI Listing

Publication Analysis

Top Keywords

mechanistic model
8
ammonia borane
8
mechanism catalyst
8
catalyst deactivation
8
fast catalysis
8
slow catalysis
8
catalyst
5
three-stage mechanistic
4
model ammonia
4
borane dehydrogenation
4

Similar Publications

Immunomodulatory lectin from Cordia myxa targets PI3K/AKT signalling mediated apoptosis to regress both in-vitro and in-vivo tumour.

Int J Biol Macromol

January 2025

Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shivamogga, Karnataka, India. Electronic address:

Plant based medicine is gaining recognition as a complementary approach to conventional treatments. Plants contain lectins that bind to carbohydrates and exhibit various biological properties and being used in cancer treatment. In present investigation Cordia myxa fruit was chosen, screen for presence of lectin and explore its biological role.

View Article and Find Full Text PDF

Integrated removal of chromium, lead, and cadmium using nano-zero-valent iron-supported biochar: Mechanistic insights and eco-toxicity assessment.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, PR China. Electronic address:

The contamination of water and soil by heavy metals (HMs) is a global issue that should be given much more concern. Modified nano-zero-valent iron (nZVI) composites offer an effective strategy for HMs remediation, but few studies have focused on removing coexisting HMs and the eco-toxicity of the composite. In this study, corn straw biochar-supported nZVI composites (nZVI-BC) were synthesized, characterized and used for the removal of Cr, Pb, and Cd in single and multi-system at different composites dosages, metal concentrations, and solution pH.

View Article and Find Full Text PDF

UL24 herpesvirus determinants of pathogenesis: Roles in virus-host interactions.

Virology

December 2024

Institut National de La Recherche Scientifique, Laval, Québec, Canada.

Members of the UL24 herpesvirus gene family are determinants of pathogenesis. The gene is widely conserved across the Orthoherpesviridae family, also commonly referred to as Herpesviridae. In this review, the impact of UL24 homologs on pathogenesis as studied with different model systems is presented, as well as mechanistic aspects related to the different roles of UL24 proteins in virus-host cell interactions.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is the most prevalent joint disorder globally, causing a substantial and increasing socioeconomic burden. Kojic acid (KA) presented potential biological roles in regulating inflammation and autophagy, which was implicated in OA progression. However, its role in chondrocytes and OA has not been reported.

View Article and Find Full Text PDF

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes.

Beilstein J Nanotechnol

December 2024

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.

Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!