Partial depletion of gamma-actin suppresses microtubule dynamics.

Cytoskeleton (Hoboken)

Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick, NSW, Australia.

Published: March 2013

Actin and microtubule interactions are important for many cellular events, however these interactions are poorly described. Alterations in γ-actin are associated with diseases such as hearing loss and cancer. Functional investigations demonstrated that partial depletion of γ-actin affects cell polarity and induces resistance to microtubule-targeted agents. To determine whether γ-actin alterations directly affect microtubule dynamics, microtubule dynamic instability was analyzed in living cells following partial siRNA depletion of γ-actin. Partial depletion of γ-actin suppresses interphase microtubule dynamics by 17.5% due to a decrease in microtubule shortening rates and an increase in microtubule attenuation. γ-Actin partial depletion also increased distance-based microtubule catastrophe and rescue frequencies. In addition, knockdown of γ-actin delayed mitotic progression, partially blocking metaphase-anaphase transition and inhibiting cell proliferation. Interestingly, in the presence of paclitaxel, interphase microtubule dynamics were further suppressed by 24.4% in the γ-actin knockdown cells, which is comparable to 28.8% suppression observed in the control siRNA treated cells. Paclitaxel blocked metaphase-anaphase transition in both the γ-actin knockdown cells and the control siRNA cells. However, the extent of mitotic arrest was much higher in the control cells (28.4%), compared to the γ-actin depleted cells (8.5%). Therefore, suppression of microtubule dynamics by partial depletion of γ-actin is associated with marked delays in metaphase-anaphase transition and not mitotic arrest. This is the first demonstration that γ-actin can modulate microtubule dynamics by reducing the microtubule shortening rate, promoting paused/attenuated microtubules, and increasing transition frequencies suggesting a mechanistic link between γ-actin and microtubules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613743PMC
http://dx.doi.org/10.1002/cm.21096DOI Listing

Publication Analysis

Top Keywords

microtubule dynamics
24
partial depletion
20
depletion γ-actin
16
γ-actin
13
microtubule
12
metaphase-anaphase transition
12
γ-actin associated
8
γ-actin partial
8
interphase microtubule
8
microtubule shortening
8

Similar Publications

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

Structure of blood cell-specific tubulin and demonstration of dimer spacing compaction in a single protofilament.

J Biol Chem

December 2024

Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA. Electronic address:

Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the post-translational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood.

View Article and Find Full Text PDF

A Ralstonia solanacearum type III effector alters the actin and microtubule cytoskeleton to promote bacterial virulence in plants.

PLoS Pathog

December 2024

Department of Botany and Plant Pathology, and Center for Plant Biology, Purdue University, West Lafayette, Indiana, United States of America.

Cellular responses to biotic stress frequently involve signaling pathways that are conserved across eukaryotes. These pathways include the cytoskeleton, a proteinaceous network that senses external cues at the cell surface and signals to interior cellular components. During biotic stress, dynamic cytoskeletal rearrangements serve as a platform from which early immune-associated processes are organized and activated.

View Article and Find Full Text PDF

Integrated Transcriptome Analysis Reveals Molecular Subtypes and ceRNA Networks in Multiple Sclerosis.

Degener Neurol Neuromuscul Dis

December 2024

Department of Clinical Laboratory, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, 214504, People's Republic of China.

Aim: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS). While extensively studied, its molecular subtypes and mechanisms remain poorly understood, hindering the identification of effective therapeutic targets.

Methods: We used ConsensusClusterPlus to analyze transcriptome data from 215 MS patient samples, identifying distinct molecular subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!