The xenocin operon of Xenorhabdus nematophila consists of xciA and ximB genes encoding a 64-kDa xenocin and 42-kDa immunity protein to kill competing microbes in the insect larva. The catalytic domain of xenocin has RNase activity and is responsible for its cytotoxicity. Under SOS conditions, xenocin is produced with immunity protein as a complex. Here, we show that xenocin and immunity protein complex are exported through the flagellar type III system of X. nematophila. Secretion of xenocin complex was abolished in an flhA strain but not in an fliC strain. The xenocin operon is not linked to the flagellar operon transcriptionally. The immunity protein is produced alone from a second, constitutive promoter and is targeted to the periplasm in a flagellum-independent manner. For stable expression of xenocin, coexpression of immunity protein was necessary. To examine the role of immunity protein in xenocin export, an enzymatically inactive protein was produced by site-directed mutagenesis in the active site of the catalytic domain. Toxicity was abolished in D535A and H538A variants of xenocin, which were expressed alone without an immunity domain and secreted in the culture supernatant through flagellar export. Secretion of xenocin through the flagellar pathway has important implications in the evolutionary success of X. nematophila.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624530PMC
http://dx.doi.org/10.1128/JB.01532-12DOI Listing

Publication Analysis

Top Keywords

immunity protein
24
xenocin
12
xenocin export
8
flagellar type
8
type iii
8
xenorhabdus nematophila
8
xenocin operon
8
catalytic domain
8
protein complex
8
secretion xenocin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!