The development of electron-based, unimolecular dissociation MS, i.e. electron capture and electron transfer dissociation (ECD and ETD, respectively), has greatly increased the speed and reliability of labile PTM site assignment. The field of intracellular O-GlcNAc (O-linked N-acetylglucosamine) signaling has especially advanced with the advent of ETD MS. Only within the last five years have proteomic-scale experiments utilizing ETD allowed the assignment of hundreds of O-GlcNAc sites within cells and subcellular structures. Our ability to identify and unambiguously assign the site of O-GlcNAc modifications using ETD is rapidly increasing our understanding of this regulatory glycosylation and its potential interaction with other PTMs. Here, we discuss the advantages of using ETD, complimented with collisional-activation MS, in a study of the extensively O-GlcNAcylated protein Host Cell Factor C1 (HCF-1). HCF-1 is a transcriptional coregulator that forms a stable complex with O-GlcNAc transferase and controls cell cycle progression. ETD, along with higher energy collisional dissociation (HCD) MS, was employed to assign the PTMs of the HCF-1 protein isolated from HEK293T cells. These include 19 sites of O-GlcNAcylation, two sites of phosphorylation, and two sites bearing dimethylarginine, and showcase the residue-specific, PTM complexity of this regulator of cell proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988289PMC
http://dx.doi.org/10.1002/pmic.201200332DOI Listing

Publication Analysis

Top Keywords

electron transfer
8
transfer dissociation
8
o-glcnacylated protein
8
protein host
8
host cell
8
cell factor
8
etd
7
o-glcnac
5
dissociation
4
dissociation etd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!