Aim: To investigate whether strontium ranelate (SR), a new antiosteoporotic agent, could attenuate cartilage degeneration and subchondral bone remodeling in osteoarthritis (OA).
Methods: Medial meniscal tear (MMT) operation was performed in adult SD rats to induce OA. SR (625 or 1800 mg·kg(-1)·d(-1)) was administered via gavage for 3 or 6 weeks. After the animals were sacrificed, articular cartilage degeneration was evaluated using toluidine blue O staining, SOX9 immunohistochemistry and TUNEL assay. The changes in microarchitecture indices and tissue mineral density (TMD), chemical composition (mineral-to-collagen ratio), and intrinsic mechanical properties of the subchondral bones were measured using micro-CT scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively.
Results: The high-dose SR significantly attenuated cartilage matrix and chondrocyte loss at 6 weeks, and decreased chondrocyte apoptosis, improved the expression of SOX9, a critical transcription factor responsible for the expression of anabolic genes type II collagen and aggrecan, at both 3 and 6 weeks. Meanwhile, the high-dose SR also significantly attenuated the subchondral bone remodeling at both 3 and 6 weeks, as shown by the improved microarchitecture indices, TMD, mineral-to-collagen ratio and intrinsic mechanical properties. In contrast, the low-dose SR did not significantly change all the detection indices of cartilage and bone at both 3 and 6 weeks.
Conclusion: The high-dose SR treatment can reduce articular cartilage degeneration and subchondral bone remodeling in the rat MMT model of OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002491 | PMC |
http://dx.doi.org/10.1038/aps.2012.167 | DOI Listing |
BMC Musculoskelet Disord
December 2024
Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University (Tangdu Hospital), 569 Xinsi Road, Baqiao District, Xi'an City, Shaanxi Province, 710000, China.
Objective: To explore the relationship between meniscus compression and the severity of knee osteoarthritis.
Materials And Methods: A retrospective case-control study included 95 patients with knee osteoarthritis (OA) admitted to our hospital from April 2021 to July 2023, who were grouped into slight protrusion of meniscus group (n = 48) and severe protrusion of meniscus group (n = 47) according to the degree of meniscal extrusion. Various parameters, including Kellgren/Lawrence classification, imaging findings, cartilage damage grading, physical function assessments, and correlation analyses, were used to evaluate the relationship between meniscal extrusion and disease progression.
Eur J Pharmacol
December 2024
National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
Despite osteoarthritis (OA) being recognised for over a century as a debilitating disease that affects millions, there are huge gaps in our understanding of the underlying pathophysiology that drives this disease. Present day studies that focussed on ubiquitination (Ub) and ubiquitylation-like (Ubl) modification related mechanisms have brought light into the possibility of attenuating OA development by targeting these specific proteins in chondrocytes. In the present review, we discuss recent advances in studies involving Ub ligases and deubiquitinating enzymes (DUBs) which are of importance in the development of OA, and may offer potential therapeutic strategies for OA.
View Article and Find Full Text PDFOsteoarthritis Cartilage
December 2024
Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:
Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia.
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Orthopaedic Trauma, Hebei Medical University Third Hospital, Ziqiang Road No.139, Shijiazhuang, Hebei Province, 050051, China.
Background: Posttraumatic osteoarthritis (PTOA) is directly associated with early acute articular cartilage injury. Inhibition of cartilage destruction immediately following joint damage can effectively slow or prevent PTOA progression. Therefore, we sought to determine intervention targets and therapeutic strategies in the acute stage of cartilage injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!