A face-capped [Fe4L4]8+ spin crossover tetrahedral cage.

Chem Commun (Camb)

Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.

Published: February 2013

Reported here is a face-capped Fe(ii) molecular tetrahedron, [Fe(4)L(4)](BF(4))(8), . Single crystal X-ray diffraction at 153 and 293 K suggest spin crossover (SCO) and variable temperature magnetic susceptibility measurements confirm displays thermally driven SCO behaviour in the solid state and in dilute acetone solution centred around 284-288 K.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc00012eDOI Listing

Publication Analysis

Top Keywords

spin crossover
8
face-capped [fe4l4]8+
4
[fe4l4]8+ spin
4
crossover tetrahedral
4
tetrahedral cage
4
cage reported
4
reported face-capped
4
face-capped feii
4
feii molecular
4
molecular tetrahedron
4

Similar Publications

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

Metal-Organic Frameworks (MOFs) attract attention for their intrinsic porosity, large surface area, and functional versatility. To fully utilize their potential in applications requiring precise control at smaller scales, it is essential to overcome challenges associated with their bulk form. This is particularly difficult for 3D MOFs with spin crossover (SCO) behavior, which undergo a reversible transition between high-spin and low-spin states in response to external stimuli.

View Article and Find Full Text PDF

Chiral effects at the metal center in Fe(III) spin crossover coordination salts.

J Phys Condens Matter

December 2024

Department of Physics and Astronomy, University of Nebraska-Lincoln, Jorgenesen Hall, 855 North 16th Street, Lincoln, Nebraska, 68588-0299, UNITED STATES.

Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] from X-ray absorption spectroscopy at the Fe 2pcore threshold. Based on the circularly polarized X-ray absorption data, the X-ray natural circular dichroism seen [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] is far stronger than seen for [Fe(qsal)Cl] suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound X-ray absorption, the greater the perturbation of the Fe 2pto 2pspin-orbit splitting seen in the X-ray absorption spectra.

View Article and Find Full Text PDF

Interplay Between Spinmerism and Spin-Orbit Coupling for a d2 Metal Ion in an Open-Shell Ligand Field.

Chemphyschem

December 2024

Laboratoire de Chimie Quantique, Universit� de Strasbourg, Department of Chemistry, 4 rue Blaise Pascal, 67000, Strasbourg, FRANCE.

Recent, theoretical studies have shown that placing a spin-crossover ion in a field of radical ligands can induce local superpositions of local spin states (see Ref.[1,2]). This phenomenon, termed spinmerism, raises questions about its stability when spin-orbit coupling is included.

View Article and Find Full Text PDF

Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe and Co mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe and Co spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!