Children with type I spinal muscular atrophy commonly demonstrate reduced bone mineral density. Our objectives were to evaluate and assess adequacy of vitamin D intake, serum levels, and association with bone mineral density. Assessments were completed using 3-day food records and dual energy x-ray absorptiometry scans. The spinal muscular atrophy type I cohort included 22 males and 18 females (N = 40), with a mean age of 18.6 months. Data collection occurred from 2001 to 2011. Seventy-five percent of patients had inadequate intake of vitamin D at the initial visit. Using mixed-effects analyses, vitamin D and calcium intakes correlated positively with bone mineral density (r = 0.31 and r = 0.53, respectively). Increased vitamin D and calcium consumption were associated with an increase in bone mineral density (P = .04 and P = .01, respectively). Vitamin D intake correlated positively with serum levels (r = 0.65). Further study is needed to determine optimal intakes of vitamin D and calcium in the spinal muscular atrophy type I population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259287PMC
http://dx.doi.org/10.1177/0883073812471857DOI Listing

Publication Analysis

Top Keywords

spinal muscular
16
muscular atrophy
16
bone mineral
16
mineral density
16
vitamin intake
12
atrophy type
12
vitamin calcium
12
type cohort
8
serum levels
8
correlated positively
8

Similar Publications

Background: Most cases of spinal muscular atrophy (SMA) can be diagnosed by copy number analysis of survival motor neuron (SMN) 1. However, a small number of cases of SMA can only be diagnosed by sequencing analysis. We present a case of SMA diagnosed 7 years after the onset of symptoms.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a degenerative neuromuscular condition resulting from a homozygous deletion of the survival motor neuron 1 () gene in 95% of patients. A timely diagnosis via newborn screening (NBS) and initiating treatment before the onset of symptoms are critical for improving health outcomes in affected individuals. We carried out a screening test by quantitative PCR (qPCR) to amplify the exon seven of using dried blood spot (DBS) samples.

View Article and Find Full Text PDF

Tofersen and other antisense oligonucleotides in ALS.

Ther Adv Neurol Disord

January 2025

Department of Neurology, Ulm University, Ulm, Germany.

The advent of antisense oligonucleotide (ASO) therapies in neurodegenerative disorders is associated with enormous hope. Nusinersen treatment was a breakthrough intervention in the recessive disease spinal muscular atrophy, and superoxide dismutase 1 (SOD1) amyotrophic lateral sclerosis (ALS) seems to be the paradigm disease in dominant degenerative diseases. The results of treatment with the ASO tofersen in SOD1-ALS show that the drug has a convincing beneficial effect on ALS caused by SOD1 mutations, that preclinical studies in rodents predicted the therapeutic effect in the human disease, and that clinical efficacy is associated with a specific sequence of effects of the drug on mechanistic and degenerative biomarkers and, subsequently, functional outcomes such as weight stabilization and ALSFRS-R.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a progressive genetic neuromuscular condition affecting spinal motor neurons. The underlying cause of SMA is deletions or mutations in the SMN gene. It is classified into five variants based on age and clinical manifestations of the patient.

View Article and Find Full Text PDF

Neurochemical mechanism of muscular pain: Insight from the study on delayed onset muscle soreness.

J Physiol Sci

January 2025

Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, 950-3198, Niigata, Japan; Institute for Human Movement and Medical Sciences (IHMMS), Niigata University of Health and Welfare, 950-3198, Niigata, Japan.

We reviewed fundamental studies on muscular pain, encompassing the characteristics of primary afferent fibers and neurons, spinal and thalamic projections, several muscular pain models, and possible neurochemical mechanisms of muscle pain. Most parts of this review were based on data obtained from animal experiments, and some researches on humans were also introduced. We focused on delayed-onset muscle soreness (DOMS) induced by lengthening contractions (LC), suitable for studying myofascial pain syndromes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!