The growth of the biodiesel industry, and its concurrent production of glycerol, has lowered the price of glycerol 20-fold. While many options for using this glycerol have been proposed, the size of the waste stream means that generation of fuels is likely to be the only viable route. One such fuel is hydrogen, production of which can be achieved biologically. The photofermentation of glycerol to hydrogen using Rhodopseudomonas palustris was investigated by exploring the growth rate, hydrogen production rate and hydrogen yield. R. palustris grows on glycerol at a rate of 0.074h(-1), and photoferments glycerol into 97mol% hydrogen at a conversion efficiency nearing 90% of the 7mol H(2) theoretical maximum at a rate of 34mlH(2)/g(dw)/h. Some inhibition of growth by crude glycerol was seen. This was determined to be caused by saponified fatty acids, removal of which yielded a treated crude glycerol which showed no inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2012.11.126 | DOI Listing |
Polymers (Basel)
January 2025
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, University of Florence, Via di S. Marta, 3, 50139, Firenze, Italy.
The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Technology and Engineering, MPUAT, Udaipur, Rajasthan-313001, India. Electronic address:
Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.
View Article and Find Full Text PDFSci Rep
January 2025
Bio-Circular-Green-Economy Technology and Engineering Center, BCGeTEC, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Glycerol carbonate (GC) can be produced from glycerol (GL), a low-value byproduct in the biodiesel industry. In this work, continuous processes of GC production via transesterification from crude GL and diethyl carbonate (DEC) were developed using Aspen Plus. Two cases were considered, and their process performances were compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!