The use of anticoagulants has been associated with systemic osteoporosis and increased risk for poor fracture healing but is inevitable following major orthopedic surgery of lower limbs. Rivaroxaban A (R) is an anticoagulant recently introduced in the clinical setting, which is a specific factor Xa inhibitor. We reported previously that R significantly inhibited cell growth, energy metabolism and alkaline phosphatase activity in human osteoblastic cell line SaOS2, with no effect on mineralization, indicating transient inhibition of bone formation. We now investigated the effects of R on SaOS2 response to osteoblast-modulating hormones. At sub-confluence cells were treated with: estradiol-17β (E2), the phytoestrogens daidzein (D) and biochainin A (BA), the carboxy-pytoestrogenic derivative carboxy-D (cD), the estrogen receptor α (ERα) agonist PPT, the estrogen receptor β (ERβ) agonist DPN, parathyroid hormone (PTH) and several vitamin D metabolites and analogs with/without R for 24h. All hormones tested stimulated significantly DNA synthesis (DNA), creatine kinase (CK) and alkaline phosphatase (ALP) specific activities, but all these stimulations were totally inhibited when given together with R. R had no effect on mRNA expression of ERα, ERβ and 25 Hydroxy-vitamin D3-1α hydroxylase (1OHase), but inhibited hormonal modulations of mRNA expressions. In conclusion R inhibited significantly hormonal stimulation of different parameters indicating inhibition of not only the early stages of bone formation, but also the stimulatory effects of bone modulating hormones with a yet unclear mechanism. The relevance of these findings to human bone physiology is yet to be investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsbmb.2013.01.006 | DOI Listing |
PLoS One
January 2025
Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia.
Hydroxyapatite (HA) is widely used as a bone graft. However, information on the head-to-head osteoinductivity and in vivo performance of micro- and nanosized natural and synthetic HA is still lacking. Here, we fabricated nanosized bovine HA (nanoBHA) by using a wet ball milling method and compared its in vitro and in vivo performance with microsized BHA, nanosized synthetic HA (nanoHA), and microsized synthetic HA (HA).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.
Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Dermatology, Stomatology, Radiology and Physical Medicine, Hospital Morales Meseguer, Medicine School, IMIB-Arrixaca, University of Murcia, 30100 Murcia, Spain.
Introduction: Graphene, a two-dimensional arrangement of carbon atoms, has drawn significant interest in medical research due to its unique properties. In the context of bone regeneration, graphene has shown several promising applications. Its robust structure, electrical conductivity, and biocompatibility make it an ideal candidate for enhancing bone tissue regeneration and repair processes.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Center for Oral, Clinical and Translational Sciences, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK.
Cranio-maxillofacial bone reconstruction, especially for large defects, remains challenging. Synthetic biomimetic materials are emerging as alternatives to autogenous grafts. Tissue engineering aims to create natural tissue-mimicking materials, with calcium phosphate-based scaffolds showing promise for bone regeneration applications.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
Bone defects restoration has always been an arduous challenge in the orthopedic field due to the limitations of conventional grafts. Bone tissue engineering offers an alternative approach by using biomimetic materials, stem cells, and growth factors that are able to improve the regeneration of bone tissue. Different biomaterials have attracted great interest in BTE applications, including the poly(3-hexylthiofene) (P3HT) conductive polymer, whose primary advantage is its capability to provide a native extracellular matrix-like environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!