Biphasic regulation of the NADPH oxidase by HGF/c-Met signaling pathway in primary mouse hepatocytes.

Biochimie

Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina S-351, 09340 Iztapalapa, México, D.F., Mexico; PhD program on Experimental Biology, Universidad Autónoma Metropolitana Iztapalapa, México, D.F., Mexico.

Published: June 2013

Redox signaling is emerging as an essential mechanism in the regulation of biological activities of the cell. The HGF/c-Met signaling pathway has been implicated as a key regulator of the cellular redox homeostasis and oxidative stress. We previously demonstrated that genetic deletion of c-Met in hepatocytes disrupts redox homeostasis by a mechanism involving NADPH oxidase. Here, we were focused to address the mechanism of NADPH oxidase regulation by HGF/c-Met signaling in primary mouse hepatocytes and its relevance. HGF induced a biphasic mechanism of NADPH oxidase regulation. The first phase employed the rapid increase in production of ROS as signaling effectors to activate the Nrf2-mediated protective response resulting in up-regulation of the antioxidant proteins, such as NAD(P)H quinone oxidoreductase and γ-glutamylcysteine synthetase. The second phase operated under a prolonged HGF exposure, caused a suppression of the NADPH oxidase components, including NOX2, NOX4, p22 and p67, and was able to abrogate the TGFβ-induced ROS production and improve cell viability. In conclusion, HGF/c-Met induces a Nrf2-mediated protective response by a double mechanism driven by NADPH oxidase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646903PMC
http://dx.doi.org/10.1016/j.biochi.2013.01.005DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
24
hgf/c-met signaling
12
signaling pathway
8
primary mouse
8
mouse hepatocytes
8
redox homeostasis
8
mechanism nadph
8
oxidase regulation
8
nrf2-mediated protective
8
protective response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!