Francisella tularensis is a zoonotic agent and the subspecies novicida is proposed to be a water-associated bacterium. The intracellular pathogen F. tularensis causes tularemia in humans and is known for its potential to be used as a biological threat. We analyzed the genome sequence of F. tularensis subsp. novicida U112 in silico for the presence of a putative functional CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system. CRISPR/Cas systems are known to encode an RNA-guided adaptive immunity-like system to protect bacteria against invading genetic elements like bacteriophages and plasmids. In this work, we present a first indication that F. tularensis subsp. novicida encodes a functional CRISPR/Cas defence system. Additionally, we identified various spacer DNAs homologous to a putative phage present within the genome of F. tularensis subsp. novicida-like strain 3523. CRISPR/Cas is also present in F. tularensis subsp. tularensis, holarctica, and mediasiatica, but these systems seem to be non-functional.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmm.2012.11.004 | DOI Listing |
Vet Med Sci
January 2025
Department of Chemistry, Environment and Feed Hygiene, SVA, Uppsala, Sweden.
Background: The zoonotic bacterium Francisella tularensis, the causative agent of tularaemia, can be transmitted to humans via multiple routes, including through contact with infected animals, contaminated water or arthropod vectors. Ticks have not previously been described as transmitting the disease in Sweden. Recently, Ixodid tick species have expanded their latitudinal and altitudinal range in Sweden to areas where the disease is endemic.
View Article and Find Full Text PDFMicroorganisms
November 2024
Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Énergie Atomique (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
Epidemiol Mikrobiol Imunol
November 2024
Int J Biol Macromol
December 2024
Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India. Electronic address:
We performed nanopore-based metagenomic screening on 885 ticks collected from 6 locations in Mongolia and divided the results into 68 samples: 23 individual samples and 45 pools of 2-12 tick samples each. We detected bacterial and parasitic pathogens Anaplasma ovis, Babesia microti, Coxiella burnetii, Borrelia miyamotoi, Francisella tularensis subsp. holarctica and novicida, Spiroplasma ixodetis, Theileria equi, and Rickettsia spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!