Vibrational spectroscopic characterization of the phosphate mineral bermanite-Mn2+Mn2(3+)(PO4)2(OH)2·4(H2O).

Spectrochim Acta A Mol Biomol Spectrosc

School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia.

Published: March 2013

Bermanite Mn(2+)Mn(2)(3+)(PO(4))(2)(OH)(2)·4(H(2)O) is a mixed valent hydrated hydroxy phosphate mineral. The mineral is reddish-brown and occurs in crystal aggregates and as lamellar masses. Bermanite is a common mineral in granitic pegmatites. The chemical composition of bermanite was obtained using EDS techniques. We have studied the molecular structure of bermanite using vibrational spectroscopy. The mineral is characterized by a Raman doublet at 991 and 999 cm(-1) attributed to the phosphate stretching mode of two non-equivalent phosphate units. Raman bands at 1071, 1117 and 1142 cm(-1) are assigned to the phosphate antisymmetric stretching modes. The hydroxyl stretching spectral region is complex with overlapping bands attributed to water and hydroxyl stretching vibrations. Vibrational spectroscopy proves most useful for the study of the mineral bermanite.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2012.12.021DOI Listing

Publication Analysis

Top Keywords

phosphate mineral
8
vibrational spectroscopy
8
hydroxyl stretching
8
mineral
6
phosphate
5
bermanite
5
vibrational spectroscopic
4
spectroscopic characterization
4
characterization phosphate
4
mineral bermanite-mn2+mn23+po42oh2·4h2o
4

Similar Publications

In 2017, Kidney Disease: Improving Global Outcomes (KDIGO) published a Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Since then, new lines of evidence have been published related to evaluating disordered mineral metabolism and bone quality and turnover, identifying and inhibiting vascular calcification, targeting vitamin D levels, and regulating parathyroid hormone. For an in-depth consideration of the new insights, in October 2023, KDIGO held a Controversies Conference on CKD-MBD: Progress and Knowledge Gaps Toward Personalizing Care.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Life cycle assessment and industrial synergy for carbon reduction: A circular economy approach.

Sci Total Environ

January 2025

Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.

In the face of the climate change crisis, circular economy (CE) is put forward as a promising key to the sustainable development goals (SDGs) riddle. In this context that affects developed and developing countries alike, circular initiatives arise, such is the case for Morocco where an industrial synergy based on the CE concept of 'waste is food' can be envisioned between the local phosphate and cement industries. In order to support and guide this initiative, a life cycle assessment (LCA) was conducted to compare the environmental performance of the production of ordinary Portland cement (OPC), limestone calcined clay cement (LC3) and a phosphate waste-based cement known as calcined marl cement (CMC).

View Article and Find Full Text PDF

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.

View Article and Find Full Text PDF

Hydroxyapatite Chitosan Gradient Pore Scaffold Activates Oxidative Phosphorylation Pathway to Induce Bone Formation.

Front Biosci (Landmark Ed)

January 2025

Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.

Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.

Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!