Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hepatic gluconeogenesis is a major contributor to blood glucose in diabetes mellitus. Our previous study indicated that areca nut extract enriched with catechin-based procyanidins from oligomers to polymers gave rise to anti-inflammatory effects in vitro and in vivo. Here we have surveyed the molecular features of areca nut procyanidins (ANPs) using quadrupole time-of-flight liquid chromatography/mass spectrometry (Q-TOF LC/MS) and the resulting mass spectrum accurately described ANP from monomer to hexadecamer. Furthermore, the potential of ANP in terms of blood glucose homeostasis was explored using cyclic adenosine monophosphate (cAMP)/dexamethasone stimulated primary mouse hepatocytes and multiple low dose streptozocin (MLD-STZ) treated mice. With the primary hepatocytes, ANP dose-dependently inhibited gluconeogenesis and reduced the mRNA expression of two gluconeogenic key enzymes, phosphoenol-pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Intragastrically feeding of 10mg/kg ANP for 4weeks reduced the levels of fasting blood glucose, PEPCK and G6Pase in MLD-STZ mice. In additional, the level of 5'-AMP-activated protein kinase (AMPK) expression showed a trend towards being restored in the ANP treated MLD-STZ-mice. This study indicated that ANP has the potential to improve hyperglycemia by regulating gluconeogenic related kinases in MLD-STZ-mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2012.12.057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!