Role of plants in metal cycling in a tidal wetland: implications for phytoremidiation.

Sci Total Environ

Department of Biology, Ecosystem Management Research Group, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

Published: February 2013

Accumulation of 8 metals and the semimetal As in 29 plant species was quantified in a restored tidal wetland on a contaminated site. Transfer coefficients between sediment and aboveground plant tissues were lower than in many other systems; from 0.013 (Pb) to 0.189 (Mn). A minor fraction of the sediment metal pool cycled through the aboveground vegetation (≤0.02%). However, during the four years of this study, species composition changed, and plant biomass as well as the metal pool in the vegetation increased (≤0.12%). Succession to either a willow dominated brushwood or a monospecific reed stand can further enlarge this pool (2.5%). Since the amount of trace metals in the wetland soil or in suspended solids deposited during tidal flooding is some orders of magnitude larger than the vegetation pool, phytoextraction is not applicable. The growth of plant species with low accumulation in aboveground tissues, e.g. Scirpus maritimus or Typha latifolia, may be preferred since this might result in lower toxic metal distribution to the wider environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2012.11.088DOI Listing

Publication Analysis

Top Keywords

tidal wetland
8
plant species
8
metal pool
8
role plants
4
metal
4
plants metal
4
metal cycling
4
cycling tidal
4
wetland implications
4
implications phytoremidiation
4

Similar Publications

Investigating surface loading effect on seasonal crustal deformation observed by GNSS in Hong Kong.

Sci Rep

January 2025

Key Laboratory of Poyang Lake Wetland and Watershed Research Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.

Surface loading effects related to atmospheric, hydrological, non-tidal ocean, are one of the principal sources of the seasonal oscillations in GNSS time series, and it should be taken into account for improving GNSS accuracy. In this study, the daily vertical time series of 9 GNSS stations at Hong Kong was used to investigate the surface loading (sum of atmospheric loading, hydrological loading, non-tidal ocean loading (AHNL)) contributors of seasonal oscillations in GNSS observations. This paper reveals a correlation between the AHNL deformation and the GNSS vertical time series, with an average correlation coefficient of 0.

View Article and Find Full Text PDF

Tidal marshes can contribute to nature-based shoreline protection by reducing the wave load onto the shore and reducing the erosion of the sediment bed. To implement such nature-based shoreline erosion protection requires the ability to quickly restore or create highly stable and erosion-resistant tidal marshes at places where they currently do not yet occur. Therefore, we aim to identify the drivers controlling the rate by which sediment stability builds up in young pioneer marshes.

View Article and Find Full Text PDF

Large-scale restoration projects are an exciting and often untapped opportunity to use an experimental approach to inform ecosystem management and test ecological theory. In our $10M tidal marsh restoration project, we installed over 17,000 high marsh plants to increase cover and diversity, using these plantings in a large-scale experiment to test the benefits of clustering and soil amendments across a stress gradient. Clustered plantings have the potential to outperform widely spaced ones if plants alter conditions in ways that decrease stress for close neighbors.

View Article and Find Full Text PDF

Unveiling the role of saltmarshes as coastal potassium sinks: A perspective from porewater-derived potassium exchange.

Sci Total Environ

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China. Electronic address:

Saltmarshes serve as repositories for various metal species, primarily due to vegetation removal and mineralization processes. However, the significance of potassium (K), one of the three major nutrients (nitrogen, phosphorus, and K) essential for plant growth, has often been overlooked, particularly in the context of saltmarshes where the mechanisms of K transport via porewater exchange remain poorly understood. To address this knowledge gap, we conducted field observations and laboratory analysis, and developed a Rn mass balance model to quantify K fluxes via porewater exchange under physical, biological, and anthropogenic drivers.

View Article and Find Full Text PDF

Population growth in coastal areas increases nitrogen inputs to receiving waterways and degrades water quality. Wetland habitats, including floodplain forests and marshes, can be effective nitrogen sinks; however, little is known about the effects of chronic point source nutrient enrichment on sediment nitrogen removal in tidally influenced coastal systems. This study characterizes enrichment patterns in two tidal systems affected by wastewater treatment facility (WWTF) effluent and assesses the impact on habitat nitrogen removal via denitrification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!