Larvae of the necrophagous Blowfly Lucilia sericata (Diptera Calliphoridae) live on vertebrate cadavers. Although continuously feeding was previously assumed for this species, we hypothesized that larvae do not feed constantly. According to this hypothesis, their crop should not always be full, which should be reflected in crop surfaces. We dissected and measured the crops of larvae of the same age and bred in the same conditions. Crop surfaces of 117 larvae just removed from the food ranged from 0 to 16.6 mm(2) (mean=5.325±2.84 mm(2)). The distribution of these crop surfaces indicates a continuous variation of satiation/feeding activity in the population. Starving experiments showed a quite long digestive process. After 90 min of starving, the decrease in crop surfaces became obvious, but 150 min were necessary to observe more than a half of the population with an empty crop (less than 2 mm(2)). No more differences were observed after 150, 180 and 240 min of starving. We finally used starved larvae to observe the kinetic of food absorption and the duration of the food-intake phase. Our results indicates that larvae can ingest faster than they digest. After 5 min spent in the food, 70% of the larvae had a crop surface larger or equal to 8 mm(2). We observed for the first time an over-feeding of the larvae, with high crop surfaces overrepresented compared to larvae never starved (control). Together, these results indicate that larvae do not feed continuously, and regulate their foraging behavior. We propose that the foraging behavior of the larvae creates a permanent movement inside the larval masses. This turnover/scramble competition may be linked to the larval-mass effect, i.e. the local temperature increase observed in large necrophagous larvae aggregates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2012.12.006 | DOI Listing |
Environ Sci Technol
January 2025
National High Magnetic Field Laboratory Geochemistry Group and Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, Florida 32306, United States.
Intensification of wastewater treatment residual (i.e., biosolid) applications to watersheds can alter the amount and composition of organic matter (OM) mobilized into waterways.
View Article and Find Full Text PDFChem Asian J
January 2025
Northeast Agricultural University, College of Horticulture and Landscape Architecture, CHINA.
In last few decades, the agriculture sector is facing various type of crops diseases originated by crop pests. Among various crops the tomato plant is greatly affected by many pests such as aphids and whiteflies, which are badly decreasing tomato plant yield and effecting its growth. In last few years, various type of pesticides such as Neonicotinoids and Pyrethroids are employed with are badly effecting eco system and water bodies.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod ( L.) invasion and soil microplastic contamination on wheat ( L.
View Article and Find Full Text PDFMolecules
January 2025
College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
To address cadmium pollution in China's cultivated land, chitosan, inorganic and organic selenium were used to modify rice husk charcoal for cadmium inhibition. Basic physicochemical properties of rice husk carbons were characterized (BET, FTIR, XRD, Zeta potential). Kinetic and isothermal adsorption experiments studied the adsorption of Cd by modified biochar under different pH and dosages.
View Article and Find Full Text PDFInsects
January 2025
Department of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, S. Guba Str. 40, H-7400 Kaposvár, Hungary.
The selection of an appropriate and targeted crop protection technology for winter oilseed rape is crucial for the economic production of this crop. Insecticides belonging to the group of diamides and butenolides are available as seed treatments for winter oilseed rape and serve as effective tools for chemical crop protection. The objective of this study was to determine the multi-directional applicability of the active ingredients cyantraniliprole and flupyradifurone.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!