Amyloid β (Αβ) has been reported to be responsible for the functional and structural abnormalities of Alzheimer's disease (AD) through the induction of oxidative stress. The aim of this study was to determine whether or not treatment of transgenic (Tg) mice with green tea catechin (GTC), a radical scavenger, improves AD phenotypes. To test this, 7-month-old Tg mice were treated with a low (1 mg) or high (10 mg) dose of GTC for 6 months. Surprisingly, GTC-treated Tg mice exhibited significant decreases in behavioral impairment, Aβ-42 production, APP-C99/89 expression, γ-secretase component and Wnt protein levels, γ-secretase activity and MAPK activation. In contrast, the levels of APP-C83 protein and enzyme activities (α-secretase, neprilysin and Pin1) were elevated in the GTC-treated groups. Moreover, GTC-treated groups showed lower levels of total cholesterol and low-density lipoprotein cholesterol, whereas the level of high-density lipoprotein cholesterol increased. These results provide the first experimental evidence that GTC improves AD phenotypes, thereby suggesting that GTC can be used in the prevention of AD or treatment of AD patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2012.10.005 | DOI Listing |
Plant Physiol Biochem
December 2024
Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, China. Electronic address:
Arbuscular mycorrhizal fungi (AMF) are known as plants' mutualists to enhance plant growth, but their impact on the quality-related metabolites in Camellia sinensis still needs to be studied. In this study, the 2-year-old potted C. sinensis cv.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.
Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2025
State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.
Rationale: Exhaled breath can be used for early warning of disease, with organic nitrogen compounds, including triethylamine (TEA), being linked to various medical conditions. Surface ionization ion mobility spectrometry (SI-IMS) facilitates the direct detection of TEA in exhaled breath. However, the presence of multiple ionization products of TEA poses challenges for both quantitative and qualitative analyses.
View Article and Find Full Text PDFEcol Lett
January 2025
Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
Abdominal aortic aneurysm (AAA) is a cardiovascular disease with potentially fatal consequences, yet effective therapies to prevent its progression remain unavailable. Oxidative stress is associated with AAA development. Carbon dots have reactive oxygen species-scavenging activity, while green tea extract exhibits robust antioxidant properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!