AI Article Synopsis

Article Abstract

Several observations suggest that the Ca2(+)-dependent postsynaptic release of nitric oxide (NO) may be important in the formation and function of the vertebrate nervous system. We explore here the hypothesis that the release of NO and its subsequent diffusion may be critically related to three aspects of nervous system function: (i) synaptic plasticity and long-term potentiation in certain regions of the adult nervous system, (ii) the control of cerebral blood flow in such regions, and (iii) the establishment and activity-dependent refinement of axonal projections during the later stages of development. In this paper, we detail and analyze the basic assumptions underlying this NO hypothesis and describe a computer simulation of a minimal version of the hypothesis. In the simulation, a 3-dimensional volume of neuropil is presented with patterned afferent input; NO is produced, diffuses, and is destroyed; and synaptic strengths are determined by a set of synaptic rules based on the correlation of synaptic depolarization and NO levels. According to the hypothesis, voltage-dependent postsynaptic release of this rapidly diffusing substance links the activities of neurons in a local volume of tissue, regardless of whether the neurons are directly connected by synapses. This property is demonstrated in the simulation, and it is this property that is exploited in the hypothesis to account for certain aspects of long-term potentiation and activity-dependent sharpening of axonal arbors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC53939PMC
http://dx.doi.org/10.1073/pnas.87.9.3547DOI Listing

Publication Analysis

Top Keywords

nervous system
16
postsynaptic release
8
long-term potentiation
8
hypothesis
6
hypothesis effects
4
effects short-lived
4
short-lived rapidly
4
rapidly diffusible
4
diffusible signal
4
signal development
4

Similar Publications

Objectives: The effects of acute physical exercise in patients with resistant hypertension remain largely unexplored compared with hypertensive patients in general. We assessed the short-term effects of acute moderate-intensity (MICE) and high-intensity interval exercise (HIIE) on the clinic (BP) and 24-h ambulatory blood pressure (ABP) of patients with resistant hypertension.

Methods: Using a crossover randomized controlled design, 10 participants (56 ± 7 years) with resistant hypertension performed three experimental sessions: MICE, HIIE, and control.

View Article and Find Full Text PDF

Background And Objectives: Previous research has demonstrated increased brain amyloid plaque load in individuals with childhood-onset epilepsy in late middle age. However, the trajectory of this process is not yet known. The aim of this study was to determine whether individuals with a history of childhood-onset epilepsy show progressive brain aging in amyloid accumulation in late adulthood (Turku Adult Childhood-Onset Epilepsy study, TACOE).

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Conformational Antibodies to Proteolipid Protein-1 and Its Peripheral Isoform DM20 in Patients With CNS Autoimmune Demyelinating Disorders.

Neurol Neuroimmunol Neuroinflamm

March 2025

Neuroimmunology Laboratory and Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy.

Background And Objectives: Antibodies to proteolipid protein-1 (PLP1-IgG), a major central myelin protein also expressed in the peripheral nervous system (PNS) as the isoform DM20, have been previously identified mostly in patients with multiple sclerosis (MS), with unclear clinical implications. However, most studies relied on nonconformational immunoassays and included few patients with non-MS CNS autoimmune demyelinating disorders (ADDs). We aimed to investigate conformational PLP1-IgG in the whole ADD spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!