Olive Cake (OC) generated by the olive oil industries, well implanted in Tunisia, represents a major disposal and potentially severe pollution problem. This work presents the study of bioconversion of OC in solid state fermentation with the medicinal mushroom, Fomes fomentarius so as to upgrade its nutritional values and digestibility for its use as ruminants feed. The fungus was cultured on OC for 7-30 d, and subsequently the chemical composition, lignocellulolytic enzyme activities and in vitro digestibility of the resultant substrate were determined. The results obtained showed an increase in the crude protein ranging from 6% to 22% for the control and for treated OC, respectively. Significant (P<0.05) decreases in the values of neutral detergent fiber (hemicelluloses, cellulose and lignin), acid detergent fiber (lignin and cellulose) and acid detergent lignin were detected (23%, 13% and 10%, respectively). The estimated in vitro digestibility improved from 9% (control) to 25% (treated OC). The present findings revealed F. fomentarius to be an efficient organism for lignocellulolytic enzymes production and simultaneous enhancement in crude protein and in vitro digestibility of OC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2012.12.015 | DOI Listing |
Antioxidants (Basel)
November 2024
Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal.
The olive oil industry generates large volumes of by-products, creating notable environmental and economic concerns. Among these, olive cake (OC)-a primary by-product of olive oil extraction-stands out due to its high content of bioactive compounds and potential for value-added recycling. This study focused on characterizing six OC samples from the Trás-os-Montes and Alto Douro regions, collected at different processing times and mills.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Department of Petroleum Engineering, Faculty of Engineering, Soran University, Soran 44008, Kurdistan Regional Government, Iraq. Electronic address:
The growing concerns for environmental sustainability and the need for eco-friendly practices in the oil and gas industry have sparked the exploration and development of biodegradable drilling fluids. This review highlights the impact of biodegradable waste additives on drilling fluid properties and their cooperation in minimizing the environmental concerns related to drilling fluid disposals. The examined properties include plastic viscosity (PV), yield point (YP), mud weight (MW), fluid loss, and gel strength.
View Article and Find Full Text PDFFoods
October 2024
Department of Veterinary Sciences, University of Messina, 13 G. Palatucci Street, 98168 Messina, Italy.
Data Brief
December 2024
Mechanical Engineering Department, Jordan University of Science and Technology, P.O. Box: 3030, Irbid 2011, Jordan.
Thermal properties play a critical role in the compost used as a soil amendment for different agricultural applications especially for green roof buildings. Despite this importance, there remains insufficient information on thermal conductivity of composted olive cake (COC), K, and how it is influenced by bulk its density and water content. This shows how thermal conductivity (K) is affected by these two parameters and the potential use of COC as cheap padding in geothermal heat storage and green roof building applications.
View Article and Find Full Text PDFHeliyon
August 2024
Preparatory Institute of Engineering Studies in Sfax, Laboratory of Environmental Sciences and Sustainable Development (LASED), University of Sfax, B.P. 805 - 3018, Sfax, Tunisia.
The compost effects on soil organic matter (SOM) stability were evaluated. Manure at 10 % ratio and compost at 10 %, 20 % and 40 % ratios (v/v) were added to the soil and their effects were compared to unamended control soil after 90-days of greenhouse-experiment. Humic acids (HA) and fulvic acids (FA) were extracted from two different soil-sample layers at 0-15 and 15-30 cm depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!