Background: Prior evidence suggests panic disorder (PD) is characterized by neurometabolic abnormalities, including increased brain lactate responses to neural activation. Increased lactate responses could reflect a general upregulation of metabolic responses to neural activation. However, prior studies in PD have not measured activity-dependent changes in brain metabolites other than lactate. Here we examine activity-dependent changes in both lactate and glutamate plus glutamine (glx) in PD.

Methods: Twenty-one PD patients (13 remitted, 8 symptomatic) and 12 healthy volunteers were studied. A single-voxel, J-difference, magnetic resonance spectroscopy editing sequence was used to measure lactate and glx changes in visual cortex induced by visual stimulation.

Results: The PD patients had significantly greater activity-dependent increases in brain lactate than healthy volunteers. The differences were significant for both remitted and symptomatic PD patients, who did not differ from each other. Activity-dependent changes in glx were significantly smaller in PD patients than in healthy volunteers. The temporal correlation between lactate and glx changes was significantly stronger in control subjects than in PD patients.

Conclusions: The novel demonstration that glx responses are diminished and temporally decoupled from lactate responses in PD contradicts the model of a general upregulation of activity-dependent brain metabolic responses in PD. The increase in activity-dependent brain lactate accumulation appears to be a trait feature of PD. Given the close relationship between lactate and pH in the brain, the findings are consistent with a model of brain metabolic and pH dysregulation associated with altered function of acid-sensitive fear circuits contributing to trait vulnerability in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636170PMC
http://dx.doi.org/10.1016/j.biopsych.2012.12.015DOI Listing

Publication Analysis

Top Keywords

brain lactate
16
activity-dependent brain
12
lactate responses
12
activity-dependent changes
12
healthy volunteers
12
lactate
11
brain
8
panic disorder
8
responses neural
8
neural activation
8

Similar Publications

Hemolysis, elevated liver enzymes, low platelet count (HELLP) syndrome is a severe complication of preeclampsia (PE), with a higher incidence rate in people living at high altitudes, such as Tibet area. Maternal HELLP syndrome is associated with an elevated neonatal mortality rate. The purpose of this study was to investigate the predicting factors for neonatal outcomes with maternal HELLP syndrome.

View Article and Find Full Text PDF

Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.

View Article and Find Full Text PDF

Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue.

View Article and Find Full Text PDF

Temporal variations in and predictive values of ABG results prior to in-hospital cardiac arrest.

J Med Surg Public Health

December 2024

College of Nursing, Michigan State University, Michigan, Life Science, 1355 Bogue St Room A218, East Lansing, MI 48824, USA.

In-hospital cardiac arrest (IHCA) has been understudied relative to out-of-hospital cardiac arrest. Further, studies of IHCA have mainly focused on a limited number of pre-arrest patient characteristics (e.g.

View Article and Find Full Text PDF

H4K12 lactylation-regulated NLRP3 is involved in cigarette smoke-accelerated Alzheimer-like pathology through mTOR-regulated autophagy and activation of microglia.

J Hazard Mater

January 2025

The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China. Electronic address:

Cigarette smoke (CS), an indoor environmental pollution, is an environmental risk factor for diverse neurological disorders. However, the neurotoxicological effects and mechanisms of CS on Alzheimer's disease (AD) progression remain unclear. We found that CS accelerated the progression of AD, including increasing β-amyloid (Aβ) plaque deposition and exacerbating cognitive decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!