We report the growth, structural, and electrical characterization of single-crystalline iron pyrite (FeS₂) nanorods, nanobelts, and nanoplates synthesized via sulfidation reaction with iron dichloride (FeCl₂) and iron dibromide (FeBr₂). The as-synthesized products were confirmed to be single-crystal phase pure cubic iron pyrite using powder X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. An intermediate reaction temperature of 425 °C or a high sulfur vapor pressure under high temperatures was found to be critical for the formation of phase pure pyrite. Field effect transport measurements showed that these pyrite nanostructures appear to behave as a moderately p-doped semiconductor with an average resistivity of 2.19 ± 1.21 Ω·cm, an improved hole mobility of 0.2 cm² V⁻¹ s⁻¹, and a lower carrier concentration on the order of 10¹⁸-10¹⁹ cm⁻³ compared with previous reported pyrite nanowires. Temperature-dependent electrical transport measurements reveal Mott variable range hopping transport in the temperature range 40-220 K and transport via thermal activation of carriers with an activation energy of 100 meV above room temperature (300-400 K). Most importantly, the transport properties of the pyrite nanodevices do not change if highly pure (99.999%) precursors are utilized, suggesting that the electrical transport is dominated by intrinsic defects in pyrite. These single-crystal pyrite nanostructures are nice platforms to further study the carrier conduction mechanisms, semiconductor defect physics, and surface properties in depth, toward improving the physical properties of pyrite for efficient solar energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn305833uDOI Listing

Publication Analysis

Top Keywords

pyrite
10
variable range
8
range hopping
8
hopping transport
8
pyrite fes₂
8
fes₂ nanorods
8
nanorods nanobelts
8
nanobelts nanoplates
8
iron pyrite
8
phase pure
8

Similar Publications

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Redox transformation and partitioning of arsenic during the hydrothermal aging of FeS-As coprecipitates under anoxic condition.

J Environ Sci (China)

July 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. Electronic address:

In sulfidic anoxic environments, iron sulfides are widespread solid phases that play an important role in the arsenic (As) biogeochemical cycle. This work investigated the transformation process of FeS-As coprecipitates, the concurrent behavior, and the speciation of associated As under anoxic conditions. The results showed that FeS-As coprecipitates could convert to greigite and pyrite.

View Article and Find Full Text PDF

Research progress on environmental behavior of arsenic in Qinghai-Tibet Plateau soil.

J Environ Sci (China)

July 2025

Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China. Electronic address:

The Qinghai-Tibet Plateau, with its high altitude and cold climate, is one of the most fragile ecological environments in China and is distinguished by its naturally elevated arsenic (As) levels in the soil, largely due to its rich mineral and geothermal resources. This review provides a comprehensive analysis of As content, focusing on its distribution, environmental migration, and transformation behavior across the plateau. The review further evaluates the distribution of As in different functional areas, revealing that geothermal fields (107.

View Article and Find Full Text PDF

Contaminants in the water environment of different pyrite mines have varying characteristics due to different geological origins. Sulfur isotope (δS) is an effective tool to reveal the mechanism of water environment contamination, but no investigations have yet analyzed the characteristics and environmental significance of the δS in the water environment of different pyrite mines. This study involved a field investigation of four typical pyrite mines in China (representing volcanic, skarn, sedimentary-metamorphic, and coal-deposited types) and the analysis of the hydrochemistry of aqueous samples and the δS of both pyrite and dissolved sulfates.

View Article and Find Full Text PDF

We investigated the metabolome of the iron- and sulfur-oxidizing, extremely thermoacidophilic archaeon grown on mineral pyrite (FeS). The extraction of organic materials from these microorganisms is a major challenge because of the tight contact and interaction between cells and mineral materials. Therefore, we applied an improved protocol to break the microbial cells and separate their organic constituents from the mineral surface, to extract lipophilic compounds through liquid-liquid extraction, and performed metabolomics analyses using MALDI-TOF MS and UHPLC-UHR-Q/TOF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!