The synthesis of galactooligosaccharides (GOS) catalyzed by β-galactosidase from Aspergillus oryzae (Enzeco) was studied. Using 400 g/L of lactose and 15 U/mL, maximum GOS yield, measured by HPAEC-PAD, was 26.8% w/w of total carbohydrates, obtained at approximately 70% lactose conversion. No less than 17 carbohydrates were identified; the major transgalactosylation product was 6'-O-β-galactosyl-lactose, representing nearly one-third (in weight) of total GOS. In contrast with previous reports, the presence of at least five disaccharides was detected, which accounted for 40% of the total GOS at the point of maximum GOS concentration (allolactose and 6-galactobiose were the major products). A. oryzae β-galactosidase showed a preference to form β(1→6) bonds, followed by β(1→3) and β(1→4) linkages. Results were compared with those obtained with β-galactosidases from Kluyveromyces lactis and Bacillus circulans. The highest GOS yield and specific productivity were achieved with B. circulans β-galactosidase. The specificity of the linkages formed and distribution of di-, tri-, and higher GOS varied significantly among the three β-galactosidases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf304354u | DOI Listing |
Biosci Biotechnol Biochem
December 2024
Faculty of Science and Technology, Keio University, Yokohama, Japan.
Most actinomycetes and fungi have a multitude of silent biosynthetic genes whose activation could lead to the production of new natural products. Our group recently designed and used a co-culture method to isolate new natural products, based on the idea that pathogens might produce immune suppressors to avoid attack by immune cells. Here, we searched for compounds produced by the co-culture of immune cells with pathogenic fungi isolated from clinical specimens.
View Article and Find Full Text PDFIran J Microbiol
December 2024
Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
Background And Objectives: Airway fungal infection is a severe clinical problem, especially in patients with compromised immune functions. Here, we examined the distribution and antifungal susceptibility profiles of fungal agents isolated from respiratory tract of symptomatic patients hospitalized in pulmonary units.
Materials And Methods: This descriptive cross-sectional study took place from 2023 to 2024, involving 360 patients.
J Asthma Allergy
December 2024
Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
Background: Allergic bronchopulmonary aspergillosis/mycosis (ABPA/M) is a complex non-infectious pulmonary benign disease characterized by an immune response against aspergillus/fungus. Carcinoembryonic antigen (CEA), typically recognized as a tumor marker, also elevated in certain benign diseases. Few studies on ABPA/M cases presenting with elevated serum CEA levels have been reported.
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan.
Research on enhancing the production of lipids, particularly polyunsaturated fatty acids that are considered important for health, has focused on improvement of metabolism as well as heterologous expression of biosynthetic genes in the oleaginous fungus . To date, the productivity and production yield of free fatty acids have been enhanced by 10-fold to 90-fold via improvements in metabolism and optimization of culture conditions. Moreover, the productivity of ester-type fatty acids present in triacylglycerols could be enhanced via metabolic improvement.
View Article and Find Full Text PDFJ Allergy Clin Immunol Glob
February 2025
Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Ga.
Background: Allergic bronchopulmonary aspergillosis (ABPA) is a disease resulting from an overactive type 2 response to . Initial studies suggest that asthma biologics can effectively treat ABPA, but it is unclear which biologic class is superior.
Objective: We sought to compare the effectiveness of asthma biologics in the treatment of ABPA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!