It has been established by methods of spectrophotometry and spin probe that the organophosphorus pesticide metaphos, widely used in practice, is an inhibitor of NADH2 oxidase of the respiratory chain of the mitochondria and exerts an influence on the structural organization of the mitochondrial membrane. An effect of metaphos on the nature of the distribution and kinetics of NADH2-induced death of monoradical spin probes of various chemical structures was detected in a suspension of submitochondrial particles obtained from beef heart.

Download full-text PDF

Source

Publication Analysis

Top Keywords

organization mitochondrial
8
influence metaphos
4
metaphos structuro-functional
4
structuro-functional organization
4
mitochondrial membranes
4
membranes established
4
established methods
4
methods spectrophotometry
4
spectrophotometry spin
4
spin probe
4

Similar Publications

The coexistence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) represents a significant global health challenge, contributing to substantial morbidity, mortality, and economic burden. T2DM is the leading cause of CKD, and CKD exacerbates diabetes-related complications, creating a bidirectional relationship driven by oxidative stress, inflammation, and endothelial dysfunction. Diabetic kidney disease (DKD), affecting some individuals with T2DM, accelerates progression to end-stage renal disease (ESRD) and increases cardiovascular mortality.

View Article and Find Full Text PDF

p-Phenylenediamines (PPDs) are widely used as antioxidants in numerous rubber products to prevent or delay oxidation and corrosion. However, their derived quinones (PPD-Qs), generated through reactions with ozone, are ubiquitous in the environment and raise significant health and toxicity concerns. This review summarizes the current state of knowledge on environmental distribution and fate, human exposure, and biological toxicity of PPDs and PPD-Qs, and makes recommendations for future research directions.

View Article and Find Full Text PDF

Mitigating LPS-induced stress in Chinese mitten crab (Eriocheir sinensis) with P4' peptide-bearing Bacillus subtilis.

Fish Shellfish Immunol

January 2025

Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China. Electronic address:

The Chinese mitten crab (Eriocheir sinensis) is an important component in Chinese aquaculture. Due to its lacking adaptive immune system as a crustacean, it exhibits poor tolerance to environmental stresses, particularly the deleterious impact of lipopolysaccharide (LPS) from pathogenic bacteria during E. sinensis culture.

View Article and Find Full Text PDF

Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:

A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.

View Article and Find Full Text PDF

A water extract of the Ayurvedic plant (L.) Urban, family Apiaceae (CAW), improves cognitive function in mouse models of aging and Alzheimer's disease and affects dendritic arborization, mitochondrial activity, and oxidative stress in mouse primary neurons. Triterpenes (TT) and caffeoylquinic acids (CQA) are constituents associated with these bioactivities of CAW, although little is known about how interactions between these compounds contribute to the plant's therapeutic benefit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!