Purpose: To explore the usefulness of histogram analysis of mean diffusivity (MD) derived from diffusion-weighted imaging of large infratentorial structures to distinguish parkinsonian syndromes.
Materials And Methods: Local research ethics committee approval and informed consent were obtained. Ten patients with Parkinson disease (PD), nine with the parkinsonian variant of multiple system atrophy (MSA-P), seven with the cerebellar variant of MSA (MSA-C), 17 with progressive supranuclear palsy-Richardson syndrome (PSP-RS), and 10 healthy subjects were recruited. Histograms of MD values were generated for all pixels in the whole infratentorial compartment and separately for the whole brainstem, vermis, and cerebellar hemispheres. To assess the differences in MD values among groups, the Kruskal-Wallis test was used, followed by the Mann-Whitney U test for pairwise comparisons. All P values resulting from pairwise comparisons were corrected with the Bonferroni method.
Results: MSA-P and MSA-C groups had higher median MD values (P < .01) in the brainstem and cerebellum when compared with other groups; this finding was in line with the known consistent neurodegenerative damage in posterior cranial fossa structures in these diseases. Median MD values from cerebellar hemispheres were used to discriminate patients with MSA-C and those with MSA-P from patients with PD and those with PSP-RS (P < .01; sensitivity, specificity, and positive predictive value equaled 100%). Furthermore, patients with PSP-RS had significantly higher MD values in the vermis than did healthy subjects (P < .05) and patients with PD (P < .001).
Conclusion: These findings support the clinical usefulness of diffusion imaging in the differential diagnosis of parkinsonism, suggesting that the minimally operator-dependent histogram analysis of the infratentorial structures and particularly of the whole cerebellar hemispheres can be used to distinguish patients with MSA-P and those with MSA-C from patients with PSP-RS and those with PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1148/radiol.12120364 | DOI Listing |
Front Neural Circuits
January 2025
Department of Advanced Medical and Surgical Sciences, Advanced MRI Research Center, University of Campania "Luigi Vanvitelli", Naples, Italy.
The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Objective: To investigate the altered characteristics of cortical morphology and individual-based morphological brain networks in type 2 diabetes mellitus (T2DM), as well as the neural network mechanisms underlying cognitive impairment in T2DM.
Methods: A total of 150 T2DM patients and 130 healthy controls (HCs) were recruited in this study. The study used voxel- and surface-based morphometric analyses to investigate morphological alterations (including gray matter volume, cortical thickness, cortical surface area, and localized gyrus index) in the brains of T2DM patients.
Front Neurol
January 2025
Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
Background: Essential tremor (ET) is the most common neurological movement disorder with few treatments and limited therapeutic efficacy, research into noninvasive and effective treatments is critical. Abnormal cerebello-thalamo-cortical (CTC) loop function are thought to be significant pathogenic causes of ET, with the cerebellum and cortex are common targets for ET treatment. In recent years, transcranial magnetic stimulation (TMS) has been recognized as a promising brain research technique owing to its noninvasive nature and safety.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neurology, Donders Institute for Brain, Cognition & Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
Repeat expansions in the fibroblast growth factor 14 gene (FGF14), associated with spinocerebellar ataxia type 27B (SCA27B), have emerged as a prevalent cause of previously unexplained late-onset cerebellar ataxia. Here, we present a patient with residual symptom of gait ataxia after complicated meningioma surgery, who presented with progressive symptoms of oculomotor disturbances, speech difficulties, vertigo and worsening of gait imbalance, twelve years post-resection. Neuroimaging revealed a surgical resection cavity in the dorsolateral side of the left cerebellar hemisphere, accompanied by gliosis in left cerebellar hemisphere extending into the vermis, extensive non-specific supratentorial periventricular white matter abnormalities, and mild atrophy of the cerebellar vermis.
View Article and Find Full Text PDFPediatr Neurol
December 2024
Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia; Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia. Electronic address:
Background: Congenital disorders of glycosylation (CDG) are a group of metabolic disorders related to dysfunctional glycoprotein and glycolipid biosynthesis. ALG11-related CDG is a rare member of this group, characterized by severe neurodevelopmental impairment, progressive microcephaly, sensorineural hearing loss, and epilepsy. The objective of this report is to provide an update on the phenotype and brain magnetic resonance imaging (MRI) at age seven years for a patient initially described in early infancy with fetal brain disruption sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!