We present a prospective, two-centre radiostereometric analysis (RSA) regarding the stability of a flattened pole titanium press-fit cup (EP-FIT PLUS), and whether additional hydroxyapatite coating leads to faster bone ingrowth into the porous coating. Forty-two postmenopausal female patients (44 hips) undergoing total hip arthroplasty for primary osteoarthritis, selected to avoid hormonal factors influencing bone metabolism, were randomised to receive this cup with a titanium-plasma-sprayed surface with or without an additional hydroxyapatite coating. RSA was used to measure cup translation and rotation along three cardinal axes with respect to the host bone at the following time points: immediately postoperatively, at 6 weeks, and at 3, 6, 12, and 24 months. The most pronounced translation was proximal (0.11 mm) and posterior tilt (-0.27°). No difference in translation and rotation could be detected between the two groups. With the exception of one cup with an isolated radiolucent line <2 mm in zone 1, all cups showed complete osseointegration on conventional radiographs. The flattened pole cup provided excellent early stability and no advantage could be detected with additional hydroxyapatite coating.

Download full-text PDF

Source
http://dx.doi.org/10.5301/HIP.2013.10598DOI Listing

Publication Analysis

Top Keywords

additional hydroxyapatite
8
hydroxyapatite coating
8
translation rotation
8
cup
5
titanium plasma-sprayed
4
plasma-sprayed cup
4
cup hydroxyapatite-coating
4
hydroxyapatite-coating randomised
4
randomised radiostereometric
4
radiostereometric study
4

Similar Publications

Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is known to be the main component of the mineral part of bones. Due to its properties HA is studied for various applications such as bone graft, drug carrier, heterogeneous catalyst or sorbent for waste water treatment. HA can be synthesized or valorized from bone wastes, as the food industry produce billions of kilograms of animal bones.

View Article and Find Full Text PDF

Enhanced mechanical properties and in vitro bioactivity of silicon nitride ceramics with SiO, YO, and AlO as sintering aids.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China. Electronic address:

Silicon nitride (Si₃N₄) ceramics exhibit excellent mechanical properties and biocompatibility, making them highly suitable for biomedical applications, particularly in implants. In this study, the mechanical properties and bioactivity of Si₃N₄ ceramics with varying amounts of Y₂O₃-Al₂O₃-SiO₂ sintering aids were investigated. Increasing the sintering additive content from 4 wt% to 8 wt% substantially improved the bulk density of the ceramics, leading to notable enhancements in mechanical properties.

View Article and Find Full Text PDF

Effects of Hydroxyapatite Additions on Alginate Gelation Kinetics During Cross-Linking.

Polymers (Basel)

January 2025

Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.

Alginate hydrogels have gathered significant attention in biomedical engineering due to their remarkable biocompatibility, biodegradability, and ability to encapsulate cells and bioactive molecules, but much less has been reported on the kinetics of gelation. Scarce experimental data are available on cross-linked alginates (AL) with bioactive components. The present study addressed a novel method for defining the crosslinking mechanism using rheological measurements for aqueous mixtures of AL and calcium chloride (CaCl) with the presence of hydroxyapatite (HAp) as filler particles.

View Article and Find Full Text PDF

Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!