Purpose: Corneal neovascularization (CNV) is associated with Chlamydia trachomatis. The minimal components of bacterial cell walls are recognized by nucleotide-binding oligomerization domain-containing protein (Nod), which is important for host defense--a mechanism manifested in human corneal cells. We aimed to examine whether Nod stimulation is associated with CNV.
Methods: Three groups of mice with alkali-induced CNV were topically treated with tripeptide L-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP, a Nod1 agonist), muramyl dipeptide (a Nod2 agonist), or phosphate-buffered saline twice daily for 8 days. The time course responses were quantified using biomicroscopic examinations and immunohistochemistry. Angiogenic factor expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction. To confirm the involvement of Nod1 signaling in CNV, RICK (an essential molecule in Nod signaling)-knockout mice treated with Tri-DAP were examined biomicroscopically and immunohistochemically 8 days after injury.
Results: According to the biomicroscopic camera images and histology, Tri-DAP and muramyl dipeptide promoted CNV. Significantly, Tri-DAP increased the number and size of the neovascularized areas. The messenger RNA expression level of vascular endothelial growth factor was elevated in the Tri-DAP-treated mice after alkali injury. Compared with wild-type mice, CNV was attenuated in RICK-deficient mice treated with Tri-DAP.
Conclusions: These data suggest that Nod1 stimulation is an important inducer of CNV and that Nod1 might be useful in the development of CNV therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ICO.0b013e3182781ea4 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Peptidoglycan (PGN) is a unique component of prokaryotic cell walls with immune-enhancing capacities. Here, we extracted PGN from , a by-product of amino acid fermentation, using the trichloroacetic acid (TCA) method. SDS-PAGE analysis confirmed the presence of PGN, with a band of approximately 28 kDa.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Joint Organization of Jiangxi Clinical Medicine Research Center for Dermatology, Ganzhou 341000, China. Electronic address:
Background: Psoriasis is a chronic inflammatory skin disease regulated by autoimmunity, and pyroptosis plays an important role in this condition. This research sought to examine the function and potential molecular pathway of Gasdermin D (GSDMD) in psoriasis.
Methods: GSDMD expression was examined by immunohistochemistry in biopsied skin tissues from patients with psoriasis.
Gut Microbes
December 2025
Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
Gut microbes play a crucial role in regulating the tumor microenvironment (TME) of colorectal cancer (CRC). Nevertheless, the deep mechanism between the microbiota-TME interaction has not been well explored. In this study, we for the first time discovered that () effectively suppressed tumor growth both in the AOM/DSS-induced CRC model and the spontaneous adenoma model.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Pathology and Pathophysiology, School of Medicine, Jinan University, Guangzhou, China.
Metastasis is a major cause of poor prognosis of pancreatic cancer. Exosomes (Exos) regulate cancer progression by modulating macrophage polarization. This study aimed to investigate the effects of cancer-associated fibroblast (CAF)-released Exos on macrophage polarization in pancreatic cancer and the molecular mechanisms.
View Article and Find Full Text PDFACS Chem Biol
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
Bacterial peptidoglycan, the essential cell surface polymer that protects bacterial integrity, also serves as the molecular pattern recognized by the host's innate immune system. Although the minimal motifs of bacterial peptidoglycan fragments (PGNs) that activate mammalian NOD1 and NOD2 sensors are well-known and often represented by small canonical ligands, the immunostimulatory effects of natural PGNs, which are structurally more complex and potentially can simultaneously activate both the NOD1 and NOD2 signaling pathways in hosts, have not been comprehensively investigated. In particular, many bacteria incorporate additional structural modifications in peptidoglycans to evade host immune surveillance, resulting in diverse structural variations among natural PGNs that may influence their biological effects in hosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!